Tetration for complex bases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

William Paulsen

ABSTRACT

In this paper we will consider the tetration, defined by the equation F(z + 1) = bF(z) in the complex plane with F(0) = 1, for the case where b is complex. A previous paper determined conditions for a unique solution the case where b is real and b > e1/e. In this paper we extend these results to find conditions which determine a unique solution for complex bases. We also develop iteration methods for numerically approximating the function F(z), both for bases inside and outside the Shell-Thron region. More... »

PAGES

243-267

References to SciGraph publications

  • 2017-12. Solving F(z + 1) = bF(z) in the complex plane in ADVANCES IN COMPUTATIONAL MATHEMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10444-018-9615-7

    DOI

    http://dx.doi.org/10.1007/s10444-018-9615-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104369501


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Arkansas State University", 
              "id": "https://www.grid.ac/institutes/grid.252381.f", 
              "name": [
                "Arkansas State University, Jonesboro, AR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paulsen", 
            "givenName": "William", 
            "id": "sg:person.011600523517.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011600523517.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1515/crll.1950.187.56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032098519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2168773.2168779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037977159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0025-5718-09-02188-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059336410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0025-5718-10-02342-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059336549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0025-5718-2012-02590-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059336740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10444-017-9524-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084024633", 
              "https://doi.org/10.1007/s10444-017-9524-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10444-017-9524-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084024633", 
              "https://doi.org/10.1007/s10444-017-9524-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "In this paper we will consider the tetration, defined by the equation F(z + 1) = bF(z) in the complex plane with F(0) = 1, for the case where b is complex. A previous paper determined conditions for a unique solution the case where b is real and b > e1/e. In this paper we extend these results to find conditions which determine a unique solution for complex bases. We also develop iteration methods for numerically approximating the function F(z), both for bases inside and outside the Shell-Thron region.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10444-018-9615-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1045108", 
            "issn": [
              "1019-7168", 
              "1572-9044"
            ], 
            "name": "Advances in Computational Mathematics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "45"
          }
        ], 
        "name": "Tetration for complex bases", 
        "pagination": "243-267", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8fe51b19e4b6c7c11c5dfcf445295c8690174d9fa3a26f615504e2553037b752"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10444-018-9615-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104369501"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10444-018-9615-7", 
          "https://app.dimensions.ai/details/publication/pub.1104369501"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47960_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10444-018-9615-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10444-018-9615-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10444-018-9615-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10444-018-9615-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10444-018-9615-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    80 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10444-018-9615-7 schema:about anzsrc-for:11
    2 anzsrc-for:1107
    3 schema:author N25c7039ecf0e4fb99e47d979360693f4
    4 schema:citation sg:pub.10.1007/s10444-017-9524-1
    5 https://doi.org/10.1090/s0025-5718-09-02188-7
    6 https://doi.org/10.1090/s0025-5718-10-02342-2
    7 https://doi.org/10.1090/s0025-5718-2012-02590-7
    8 https://doi.org/10.1145/2168773.2168779
    9 https://doi.org/10.1515/crll.1950.187.56
    10 schema:datePublished 2019-02
    11 schema:datePublishedReg 2019-02-01
    12 schema:description In this paper we will consider the tetration, defined by the equation F(z + 1) = bF(z) in the complex plane with F(0) = 1, for the case where b is complex. A previous paper determined conditions for a unique solution the case where b is real and b > e1/e. In this paper we extend these results to find conditions which determine a unique solution for complex bases. We also develop iteration methods for numerically approximating the function F(z), both for bases inside and outside the Shell-Thron region.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N50197251b27446869266daaf24374c29
    17 Ne0011a871b6949aabdd421e57aaab819
    18 sg:journal.1045108
    19 schema:name Tetration for complex bases
    20 schema:pagination 243-267
    21 schema:productId N04fdb29464054398a0673f84ffcc87bc
    22 N6e683ea3f87e4ec1a8318541cb0dc0f6
    23 N9880e253d57f4183ba8521f31a6409ac
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104369501
    25 https://doi.org/10.1007/s10444-018-9615-7
    26 schema:sdDatePublished 2019-04-11T09:08
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N4dbbd834dbb84ddb89b24cad244648f5
    29 schema:url https://link.springer.com/10.1007%2Fs10444-018-9615-7
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N04fdb29464054398a0673f84ffcc87bc schema:name readcube_id
    34 schema:value 8fe51b19e4b6c7c11c5dfcf445295c8690174d9fa3a26f615504e2553037b752
    35 rdf:type schema:PropertyValue
    36 N25c7039ecf0e4fb99e47d979360693f4 rdf:first sg:person.011600523517.84
    37 rdf:rest rdf:nil
    38 N4dbbd834dbb84ddb89b24cad244648f5 schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 N50197251b27446869266daaf24374c29 schema:issueNumber 1
    41 rdf:type schema:PublicationIssue
    42 N6e683ea3f87e4ec1a8318541cb0dc0f6 schema:name dimensions_id
    43 schema:value pub.1104369501
    44 rdf:type schema:PropertyValue
    45 N9880e253d57f4183ba8521f31a6409ac schema:name doi
    46 schema:value 10.1007/s10444-018-9615-7
    47 rdf:type schema:PropertyValue
    48 Ne0011a871b6949aabdd421e57aaab819 schema:volumeNumber 45
    49 rdf:type schema:PublicationVolume
    50 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Medical and Health Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Immunology
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1045108 schema:issn 1019-7168
    57 1572-9044
    58 schema:name Advances in Computational Mathematics
    59 rdf:type schema:Periodical
    60 sg:person.011600523517.84 schema:affiliation https://www.grid.ac/institutes/grid.252381.f
    61 schema:familyName Paulsen
    62 schema:givenName William
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011600523517.84
    64 rdf:type schema:Person
    65 sg:pub.10.1007/s10444-017-9524-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084024633
    66 https://doi.org/10.1007/s10444-017-9524-1
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1090/s0025-5718-09-02188-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059336410
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1090/s0025-5718-10-02342-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059336549
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1090/s0025-5718-2012-02590-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059336740
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1145/2168773.2168779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037977159
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1515/crll.1950.187.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032098519
    77 rdf:type schema:CreativeWork
    78 https://www.grid.ac/institutes/grid.252381.f schema:alternateName Arkansas State University
    79 schema:name Arkansas State University, Jonesboro, AR, USA
    80 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...