Indirect Microwave Curing Process Design for Manufacturing Thick Multidirectional Carbon Fiber Reinforced Thermoset Composite Materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Jing Zhou, Yingguang Li, Libing Cheng, Linglin Zhang

ABSTRACT

Recently, indirect microwave curing technology was developed to process multidirectional carbon fiber reinforced composite materials with high efficient and energy saving purpose. The aim of this paper is to solve the problem of large mid-plane heat generation in manufacturing this kind of materials with large thickness. The difference between the traditional thermal curing and indirect microwave curing processes was analyzed. A Multiphysics model was constructed to reflect the composite curing behavior in a cost-effective manner, which agreed well with the experimental results. On this basis, a new indirect microwave curing cycle was designed, and relevant process parameters were determined. Compared with the manufacturer’s recommended cycle, the degree of mid-plane heat generation was greatly relieved, and a reduction of 34.6% in composite residual strains was achieved. Moreover, the curing cycle was reduced by 38%, while the interlaminar shear strength of the composite was improved by 1.38 times. Corresponding reinforcement mechanisms were explored through the observation of composite cross-sections with optical microscopes. More... »

PAGES

533-552

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10443-018-9724-y

DOI

http://dx.doi.org/10.1007/s10443-018-9724-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105608672


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jing", 
        "id": "sg:person.010143467322.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143467322.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yingguang", 
        "id": "sg:person.011555605443.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011555605443.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Libing", 
        "id": "sg:person.016157071203.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016157071203.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Linglin", 
        "id": "sg:person.013150546443.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013150546443.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.tca.2014.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000996945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2013.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005185112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2015.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012818139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998302036001300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016737221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998302036001300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016737221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-835x(95)00023-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020650448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-835x(99)00020-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025942217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-016-8613-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027277732", 
          "https://doi.org/10.1007/s00170-016-8613-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2004.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033812200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesa.2015.10.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037177878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2011.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041308300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesa.2012.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042698536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2016.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043478200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.02.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044463062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998316673892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063623700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998316673892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063623700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199838401800405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063624282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199838401800405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063624282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2017.05.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085713105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2017.09.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091985593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10443-017-9658-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092649421", 
          "https://doi.org/10.1007/s10443-017-9658-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10443-017-9662-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092656993", 
          "https://doi.org/10.1007/s10443-017-9662-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesa.2017.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099699800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesa.2017.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099699800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10443-017-9669-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100247009", 
          "https://doi.org/10.1007/s10443-017-9669-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-1974-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103483986", 
          "https://doi.org/10.1007/s00170-018-1974-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-1974-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103483986", 
          "https://doi.org/10.1007/s00170-018-1974-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Recently, indirect microwave curing technology was developed to process multidirectional carbon fiber reinforced composite materials with high efficient and energy saving purpose. The aim of this paper is to solve the problem of large mid-plane heat generation in manufacturing this kind of materials with large thickness. The difference between the traditional thermal curing and indirect microwave curing processes was analyzed. A Multiphysics model was constructed to reflect the composite curing behavior in a cost-effective manner, which agreed well with the experimental results. On this basis, a new indirect microwave curing cycle was designed, and relevant process parameters were determined. Compared with the manufacturer\u2019s recommended cycle, the degree of mid-plane heat generation was greatly relieved, and a reduction of 34.6% in composite residual strains was achieved. Moreover, the curing cycle was reduced by 38%, while the interlaminar shear strength of the composite was improved by 1.38 times. Corresponding reinforcement mechanisms were explored through the observation of composite cross-sections with optical microscopes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10443-018-9724-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136520", 
        "issn": [
          "0929-189X", 
          "1573-4897"
        ], 
        "name": "Applied Composite Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Indirect Microwave Curing Process Design for Manufacturing Thick Multidirectional Carbon Fiber Reinforced Thermoset Composite Materials", 
    "pagination": "533-552", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b96b095ed4cdefd1929e087239f1ad6914fb6e895cf9d9ebf372f6ff5d19cc3b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10443-018-9724-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105608672"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10443-018-9724-y", 
      "https://app.dimensions.ai/details/publication/pub.1105608672"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130811_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10443-018-9724-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10443-018-9724-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10443-018-9724-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10443-018-9724-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10443-018-9724-y'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10443-018-9724-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1af6cd584c7e49eb911dfc02d5c9a517
4 schema:citation sg:pub.10.1007/s00170-016-8613-5
5 sg:pub.10.1007/s00170-018-1974-1
6 sg:pub.10.1007/s10443-017-9658-9
7 sg:pub.10.1007/s10443-017-9662-0
8 sg:pub.10.1007/s10443-017-9669-6
9 https://doi.org/10.1016/1359-835x(95)00023-u
10 https://doi.org/10.1016/j.compositesa.2012.02.023
11 https://doi.org/10.1016/j.compositesa.2015.10.035
12 https://doi.org/10.1016/j.compositesa.2017.12.017
13 https://doi.org/10.1016/j.compscitech.2004.07.015
14 https://doi.org/10.1016/j.compscitech.2016.07.033
15 https://doi.org/10.1016/j.compstruct.2017.05.066
16 https://doi.org/10.1016/j.compstruct.2017.09.069
17 https://doi.org/10.1016/j.jmatprotec.2013.10.012
18 https://doi.org/10.1016/j.jmatprotec.2015.12.001
19 https://doi.org/10.1016/j.matdes.2016.02.093
20 https://doi.org/10.1016/j.tca.2011.03.014
21 https://doi.org/10.1016/j.tca.2014.02.017
22 https://doi.org/10.1016/s1359-835x(99)00020-2
23 https://doi.org/10.1177/0021998302036001300
24 https://doi.org/10.1177/0021998316673892
25 https://doi.org/10.1177/002199838401800405
26 schema:datePublished 2019-04
27 schema:datePublishedReg 2019-04-01
28 schema:description Recently, indirect microwave curing technology was developed to process multidirectional carbon fiber reinforced composite materials with high efficient and energy saving purpose. The aim of this paper is to solve the problem of large mid-plane heat generation in manufacturing this kind of materials with large thickness. The difference between the traditional thermal curing and indirect microwave curing processes was analyzed. A Multiphysics model was constructed to reflect the composite curing behavior in a cost-effective manner, which agreed well with the experimental results. On this basis, a new indirect microwave curing cycle was designed, and relevant process parameters were determined. Compared with the manufacturer’s recommended cycle, the degree of mid-plane heat generation was greatly relieved, and a reduction of 34.6% in composite residual strains was achieved. Moreover, the curing cycle was reduced by 38%, while the interlaminar shear strength of the composite was improved by 1.38 times. Corresponding reinforcement mechanisms were explored through the observation of composite cross-sections with optical microscopes.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N726d8a509a084d8aa36c24e60a10bb53
33 Nbcd61fbc0c394d5eb6b428096d266f49
34 sg:journal.1136520
35 schema:name Indirect Microwave Curing Process Design for Manufacturing Thick Multidirectional Carbon Fiber Reinforced Thermoset Composite Materials
36 schema:pagination 533-552
37 schema:productId N64ab27f511bb478f9348ce161b3a6a74
38 N67b62fab8b08477fbc1881dd80637f89
39 N75201f91c127470dad143b915bc90eec
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105608672
41 https://doi.org/10.1007/s10443-018-9724-y
42 schema:sdDatePublished 2019-04-11T13:55
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N6bac11b8d44646b282843748776fc931
45 schema:url https://link.springer.com/10.1007%2Fs10443-018-9724-y
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N1af6cd584c7e49eb911dfc02d5c9a517 rdf:first sg:person.010143467322.25
50 rdf:rest Nbc87681760a347289a91365b76f3395a
51 N64ab27f511bb478f9348ce161b3a6a74 schema:name doi
52 schema:value 10.1007/s10443-018-9724-y
53 rdf:type schema:PropertyValue
54 N67b62fab8b08477fbc1881dd80637f89 schema:name readcube_id
55 schema:value b96b095ed4cdefd1929e087239f1ad6914fb6e895cf9d9ebf372f6ff5d19cc3b
56 rdf:type schema:PropertyValue
57 N6bac11b8d44646b282843748776fc931 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N726d8a509a084d8aa36c24e60a10bb53 schema:volumeNumber 26
60 rdf:type schema:PublicationVolume
61 N75201f91c127470dad143b915bc90eec schema:name dimensions_id
62 schema:value pub.1105608672
63 rdf:type schema:PropertyValue
64 N9a00e61ec68e4ea994767aa8d11c46a9 rdf:first sg:person.013150546443.52
65 rdf:rest rdf:nil
66 Nbc87681760a347289a91365b76f3395a rdf:first sg:person.011555605443.06
67 rdf:rest Neb6ea45e188842199aa1228ea0552e6c
68 Nbcd61fbc0c394d5eb6b428096d266f49 schema:issueNumber 2
69 rdf:type schema:PublicationIssue
70 Neb6ea45e188842199aa1228ea0552e6c rdf:first sg:person.016157071203.27
71 rdf:rest N9a00e61ec68e4ea994767aa8d11c46a9
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
76 schema:name Materials Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1136520 schema:issn 0929-189X
79 1573-4897
80 schema:name Applied Composite Materials
81 rdf:type schema:Periodical
82 sg:person.010143467322.25 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
83 schema:familyName Zhou
84 schema:givenName Jing
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143467322.25
86 rdf:type schema:Person
87 sg:person.011555605443.06 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
88 schema:familyName Li
89 schema:givenName Yingguang
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011555605443.06
91 rdf:type schema:Person
92 sg:person.013150546443.52 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
93 schema:familyName Zhang
94 schema:givenName Linglin
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013150546443.52
96 rdf:type schema:Person
97 sg:person.016157071203.27 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
98 schema:familyName Cheng
99 schema:givenName Libing
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016157071203.27
101 rdf:type schema:Person
102 sg:pub.10.1007/s00170-016-8613-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027277732
103 https://doi.org/10.1007/s00170-016-8613-5
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00170-018-1974-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103483986
106 https://doi.org/10.1007/s00170-018-1974-1
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10443-017-9658-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092649421
109 https://doi.org/10.1007/s10443-017-9658-9
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10443-017-9662-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092656993
112 https://doi.org/10.1007/s10443-017-9662-0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10443-017-9669-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100247009
115 https://doi.org/10.1007/s10443-017-9669-6
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/1359-835x(95)00023-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1020650448
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.compositesa.2012.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042698536
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.compositesa.2015.10.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037177878
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.compositesa.2017.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099699800
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.compscitech.2004.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033812200
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.compscitech.2016.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043478200
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.compstruct.2017.05.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085713105
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.compstruct.2017.09.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091985593
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jmatprotec.2013.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005185112
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jmatprotec.2015.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012818139
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.matdes.2016.02.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044463062
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.tca.2011.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041308300
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.tca.2014.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000996945
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s1359-835x(99)00020-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025942217
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1177/0021998302036001300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016737221
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1177/0021998316673892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063623700
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1177/002199838401800405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063624282
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.64938.30 schema:alternateName Nanjing University of Aeronautics and Astronautics
152 schema:name College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...