Boundedness for a Fully Parabolic Keller–Segel Model with Sublinear Segregation and Superlinear Aggregation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-02

AUTHORS

Silvia Frassu, Giuseppe Viglialoro

ABSTRACT

This work deals with a fully parabolic chemotaxis model with nonlinear production and chemoattractant. The problem is formulated on a bounded domain and, depending on a specific interplay between the coefficients associated to such production and chemoattractant, we establish that the related initial-boundary value problem has a unique classical solution which is uniformly bounded in time. To be precise, we study this zero-flux problem ◊{ut=Δu−∇⋅(f(u)∇v) in Ω×(0,Tmax),vt=Δv−v+g(u) in Ω×(0,Tmax),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} u_{t}= \Delta u - \nabla \cdot (f(u) \nabla v) & \text{ in } \Omega \times (0,T_{max}), \\ v_{t}=\Delta v-v+g(u) & \text{ in } \Omega \times (0,T_{max}), \end{cases} $$\end{document} where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega $\end{document} is a bounded and smooth domain of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document}, for n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq 2$\end{document}, and f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)$\end{document} and g(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(u)$\end{document} are reasonably regular functions generalizing, respectively, the prototypes f(u)=uα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)=u^{\alpha }$\end{document} and g(u)=ul\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(u)=u^{l}$\end{document}, with proper α,l>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha , l>0$\end{document}. After having shown that any sufficiently smooth u(x,0)=u0(x)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(x,0)=u_{0}(x)\geq 0$\end{document} and v(x,0)=v0(x)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v(x,0)=v_{0}(x)\geq 0$\end{document} produce a unique classical and nonnegative solution (u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(u,v)$\end{document} to problem (◊), which is defined on Ω×(0,Tmax)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \times (0,T_{max})$\end{document} with Tmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{max}$\end{document} denoting the maximum time of existence, we establish that for any l∈(0,2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l\in (0,\frac{2}{n})$\end{document} and 2n≤α<1+1n−l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{2}{n}\leq \alpha <1+\frac{1}{n}-\frac{l}{2}$\end{document}, Tmax=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{max}=\infty $\end{document} and u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v$\end{document} are actually uniformly bounded in time.The paper is in line with the contribution by Horstmann and Winkler (J. Differ. Equ. 215(1):52–107, 2005) and, moreover, extends the result by Liu and Tao (Appl. Math. J. Chin. Univ. Ser. B 31(4):379–388, 2016). Indeed, in the first work it is proved that for g(u)=u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(u)=u$\end{document} the value α=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha =\frac{2}{n}$\end{document} represents the critical blow-up exponent to the model, whereas in the second, for f(u)=u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)=u$\end{document}, corresponding to α=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha =1$\end{document}, boundedness of solutions is shown under the assumption 0 More... »

PAGES

19

References to SciGraph publications

  • 1998-01. Pattern formation in a generalized chemotactic model in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2002. Mathematical Biology, I. An Introduction in NONE
  • 2008-07-15. A user’s guide to PDE models for chemotaxis in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2019-05-02. Global in Time and Bounded Solutions to a Parabolic–Elliptic Chemotaxis System with Nonlinear Diffusion and Signal-Dependent Sensitivity in APPLIED MATHEMATICS & OPTIMIZATION
  • 2016-12-06. Boundedness in a chemotaxis system with nonlinear signal production in APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10440-021-00386-6

    DOI

    http://dx.doi.org/10.1007/s10440-021-00386-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1135072689


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento di Matematica e Informatica, Universit\u00e0 di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7763.5", 
              "name": [
                "Dipartimento di Matematica e Informatica, Universit\u00e0 di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frassu", 
            "givenName": "Silvia", 
            "id": "sg:person.015174231223.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174231223.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Matematica e Informatica, Universit\u00e0 di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7763.5", 
              "name": [
                "Dipartimento di Matematica e Informatica, Universit\u00e0 di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Viglialoro", 
            "givenName": "Giuseppe", 
            "id": "sg:person.015475637345.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015475637345.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/b98868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028080802", 
              "https://doi.org/10.1007/b98868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00245-019-09575-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113877483", 
              "https://doi.org/10.1007/s00245-019-09575-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11766-016-3386-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044170572", 
              "https://doi.org/10.1007/s11766-016-3386-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-008-0201-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027054479", 
              "https://doi.org/10.1007/s00285-008-0201-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1006/bulm.1997.0010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019648956", 
              "https://doi.org/10.1006/bulm.1997.0010"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-02-02", 
        "datePublishedReg": "2021-02-02", 
        "description": "This work deals with a fully parabolic chemotaxis model with nonlinear production and chemoattractant. The problem is formulated on a bounded domain and, depending on a specific interplay between the coefficients associated to such production and chemoattractant, we establish that the related initial-boundary value problem has a unique classical solution which is uniformly bounded in time. To be precise, we study this zero-flux problem \n\t\t\t\u25ca{ut=\u0394u\u2212\u2207\u22c5(f(u)\u2207v)\u00a0in\u00a0\u03a9\u00d7(0,Tmax),vt=\u0394v\u2212v+g(u)\u00a0in\u00a0\u03a9\u00d7(0,Tmax),\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\textstyle\\begin{cases} u_{t}= \\Delta u - \\nabla \\cdot (f(u) \\nabla v) & \\text{ in } \\Omega \\times (0,T_{max}), \\\\ v_{t}=\\Delta v-v+g(u) & \\text{ in } \\Omega \\times (0,T_{max}), \\end{cases} $$\\end{document} where \u03a9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\Omega $\\end{document} is a bounded and smooth domain of Rn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathbb{R}^{n}$\\end{document}, for n\u22652\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$n\\geq 2$\\end{document}, and f(u)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$f(u)$\\end{document} and g(u)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$g(u)$\\end{document} are reasonably regular functions generalizing, respectively, the prototypes f(u)=u\u03b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$f(u)=u^{\\alpha }$\\end{document} and g(u)=ul\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$g(u)=u^{l}$\\end{document}, with proper \u03b1,l>0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\alpha , l>0$\\end{document}. After having shown that any sufficiently smooth u(x,0)=u0(x)\u22650\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$u(x,0)=u_{0}(x)\\geq 0$\\end{document} and v(x,0)=v0(x)\u22650\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$v(x,0)=v_{0}(x)\\geq 0$\\end{document} produce a unique classical and nonnegative solution (u,v)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$(u,v)$\\end{document} to problem (\u25ca), which is defined on \u03a9\u00d7(0,Tmax)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\Omega \\times (0,T_{max})$\\end{document} with Tmax\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$T_{max}$\\end{document} denoting the maximum time of existence, we establish that for any l\u2208(0,2n)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$l\\in (0,\\frac{2}{n})$\\end{document} and 2n\u2264\u03b1<1+1n\u2212l2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\frac{2}{n}\\leq \\alpha <1+\\frac{1}{n}-\\frac{l}{2}$\\end{document}, Tmax=\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$T_{max}=\\infty $\\end{document} and u\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$u$\\end{document} and v\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$v$\\end{document} are actually uniformly bounded in time.The paper is in line with the contribution by Horstmann and Winkler (J. Differ. Equ. 215(1):52\u2013107, 2005) and, moreover, extends the result by Liu and Tao (Appl. Math. J. Chin. Univ. Ser. B 31(4):379\u2013388, 2016). Indeed, in the first work it is proved that for g(u)=u\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$g(u)=u$\\end{document} the value \u03b1=2n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\alpha =\\frac{2}{n}$\\end{document} represents the critical blow-up exponent to the model, whereas in the second, for f(u)=u\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$f(u)=u$\\end{document}, corresponding to \u03b1=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\alpha =1$\\end{document}, boundedness of solutions is shown under the assumption 0
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10440-021-00386-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10440-021-00386-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10440-021-00386-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10440-021-00386-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    143 TRIPLES      21 PREDICATES      79 URIs      63 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10440-021-00386-6 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 anzsrc-for:02
    5 anzsrc-for:0202
    6 schema:author Ne80245701a14470294dfec79b359ffeb
    7 schema:citation sg:pub.10.1006/bulm.1997.0010
    8 sg:pub.10.1007/b98868
    9 sg:pub.10.1007/s00245-019-09575-0
    10 sg:pub.10.1007/s00285-008-0201-3
    11 sg:pub.10.1007/s11766-016-3386-z
    12 schema:datePublished 2021-02-02
    13 schema:datePublishedReg 2021-02-02
    14 schema:description This work deals with a fully parabolic chemotaxis model with nonlinear production and chemoattractant. The problem is formulated on a bounded domain and, depending on a specific interplay between the coefficients associated to such production and chemoattractant, we establish that the related initial-boundary value problem has a unique classical solution which is uniformly bounded in time. To be precise, we study this zero-flux problem ◊{ut=Δu−∇⋅(f(u)∇v) in Ω×(0,Tmax),vt=Δv−v+g(u) in Ω×(0,Tmax),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} u_{t}= \Delta u - \nabla \cdot (f(u) \nabla v) & \text{ in } \Omega \times (0,T_{max}), \\ v_{t}=\Delta v-v+g(u) & \text{ in } \Omega \times (0,T_{max}), \end{cases} $$\end{document} where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega $\end{document} is a bounded and smooth domain of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document}, for n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq 2$\end{document}, and f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)$\end{document} and g(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(u)$\end{document} are reasonably regular functions generalizing, respectively, the prototypes f(u)=uα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)=u^{\alpha }$\end{document} and g(u)=ul\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(u)=u^{l}$\end{document}, with proper α,l>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha , l>0$\end{document}. After having shown that any sufficiently smooth u(x,0)=u0(x)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(x,0)=u_{0}(x)\geq 0$\end{document} and v(x,0)=v0(x)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v(x,0)=v_{0}(x)\geq 0$\end{document} produce a unique classical and nonnegative solution (u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(u,v)$\end{document} to problem (◊), which is defined on Ω×(0,Tmax)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \times (0,T_{max})$\end{document} with Tmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{max}$\end{document} denoting the maximum time of existence, we establish that for any l∈(0,2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l\in (0,\frac{2}{n})$\end{document} and 2n≤α<1+1n−l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{2}{n}\leq \alpha <1+\frac{1}{n}-\frac{l}{2}$\end{document}, Tmax=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{max}=\infty $\end{document} and u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v$\end{document} are actually uniformly bounded in time.The paper is in line with the contribution by Horstmann and Winkler (J. Differ. Equ. 215(1):52–107, 2005) and, moreover, extends the result by Liu and Tao (Appl. Math. J. Chin. Univ. Ser. B 31(4):379–388, 2016). Indeed, in the first work it is proved that for g(u)=u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(u)=u$\end{document} the value α=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha =\frac{2}{n}$\end{document} represents the critical blow-up exponent to the model, whereas in the second, for f(u)=u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(u)=u$\end{document}, corresponding to α=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha =1$\end{document}, boundedness of solutions is shown under the assumption 0<l<2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< l<\frac{2}{n}$\end{document}.
    15 schema:genre article
    16 schema:isAccessibleForFree true
    17 schema:isPartOf N735469481a61490f81f54e2545c9e7d8
    18 Nf6d184e468234be1990c3625fbd76a31
    19 sg:journal.1028030
    20 schema:keywords Assumption 0
    21 Horstmann
    22 Keller–Segel model
    23 Liu
    24 Tao
    25 UT
    26 Winkler
    27 aggregation
    28 blow
    29 boundedness
    30 boundedness of solutions
    31 chemoattractant
    32 chemotaxis model
    33 classical solutions
    34 coefficient
    35 contribution
    36 critical blow
    37 domain
    38 existence
    39 exponent
    40 first work
    41 function
    42 initial-boundary value problem
    43 interplay
    44 lines
    45 maximum time
    46 model
    47 nonlinear production
    48 nonnegative solutions
    49 paper
    50 parabolic chemotaxis model
    51 problem
    52 production
    53 prototype
    54 regular functions
    55 related initial-boundary value problem
    56 results
    57 segregation
    58 smooth domain
    59 solution
    60 specific interplay
    61 such production
    62 time
    63 unique classical solution
    64 value problem
    65 values
    66 work
    67 schema:name Boundedness for a Fully Parabolic Keller–Segel Model with Sublinear Segregation and Superlinear Aggregation
    68 schema:pagination 19
    69 schema:productId N1415362c4313424b86a1608fd261a5b4
    70 N422bdc323eca47bba53d99e88fdb5c4b
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135072689
    72 https://doi.org/10.1007/s10440-021-00386-6
    73 schema:sdDatePublished 2022-10-01T06:48
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher Nfd81eea9cfb24d438e171fc79de5fbcd
    76 schema:url https://doi.org/10.1007/s10440-021-00386-6
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N1415362c4313424b86a1608fd261a5b4 schema:name doi
    81 schema:value 10.1007/s10440-021-00386-6
    82 rdf:type schema:PropertyValue
    83 N422bdc323eca47bba53d99e88fdb5c4b schema:name dimensions_id
    84 schema:value pub.1135072689
    85 rdf:type schema:PropertyValue
    86 N735469481a61490f81f54e2545c9e7d8 schema:volumeNumber 171
    87 rdf:type schema:PublicationVolume
    88 Ne80245701a14470294dfec79b359ffeb rdf:first sg:person.015174231223.00
    89 rdf:rest Nf532c095325a407ea4ccd5c159ac003c
    90 Nf532c095325a407ea4ccd5c159ac003c rdf:first sg:person.015475637345.82
    91 rdf:rest rdf:nil
    92 Nf6d184e468234be1990c3625fbd76a31 schema:issueNumber 1
    93 rdf:type schema:PublicationIssue
    94 Nfd81eea9cfb24d438e171fc79de5fbcd schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Mathematical Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Pure Mathematics
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Applied Mathematics
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Physical Sciences
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    110 rdf:type schema:DefinedTerm
    111 sg:journal.1028030 schema:issn 0167-8019
    112 1572-9036
    113 schema:name Acta Applicandae Mathematicae
    114 schema:publisher Springer Nature
    115 rdf:type schema:Periodical
    116 sg:person.015174231223.00 schema:affiliation grid-institutes:grid.7763.5
    117 schema:familyName Frassu
    118 schema:givenName Silvia
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174231223.00
    120 rdf:type schema:Person
    121 sg:person.015475637345.82 schema:affiliation grid-institutes:grid.7763.5
    122 schema:familyName Viglialoro
    123 schema:givenName Giuseppe
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015475637345.82
    125 rdf:type schema:Person
    126 sg:pub.10.1006/bulm.1997.0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019648956
    127 https://doi.org/10.1006/bulm.1997.0010
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/b98868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028080802
    130 https://doi.org/10.1007/b98868
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s00245-019-09575-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113877483
    133 https://doi.org/10.1007/s00245-019-09575-0
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s00285-008-0201-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027054479
    136 https://doi.org/10.1007/s00285-008-0201-3
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s11766-016-3386-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1044170572
    139 https://doi.org/10.1007/s11766-016-3386-z
    140 rdf:type schema:CreativeWork
    141 grid-institutes:grid.7763.5 schema:alternateName Dipartimento di Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
    142 schema:name Dipartimento di Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
    143 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...