On a Hilbert-Type Integral Inequality Related to the Extended Hurwitz Zeta Function in the Whole Plane View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Michael Th. Rassias, Bicheng Yang

ABSTRACT

By using techniques of real analysis and weight functions, a few equivalent statements of a Hilbert-type integral inequality with the nonhomogeneous kernel in the whole plane are obtained. The constant factor related the extended Hurwitz zeta function is proved to be the best possible. As applications, a few equivalent statements of a Hilbert-type integral inequality with the homogeneous kernel in the whole plane are deduced. We also consider the operator expressions and some corollaries. More... »

PAGES

67-80

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10440-018-0195-9

DOI

http://dx.doi.org/10.1007/s10440-018-0195-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104596544


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Institute of Mathematics, University of Zurich, 8057, Zurich, Switzerland", 
            "Institute for Advanced Study Program in Interdisciplinary Studies, 1 Einstein Dr, 08540, Princeton, NJ, USA", 
            "Moscow Institute of Physics and Technology, Institutskiy per, d. 9, 141700, Dolgoprudny, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rassias", 
        "givenName": "Michael Th.", 
        "id": "sg:person.010537175231.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537175231.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong Institute of Education", 
          "id": "https://www.grid.ac/institutes/grid.440716.0", 
          "name": [
            "Department of Mathematics, Guangdong University of Education, 510303, Guangzhou, Guangdong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Bicheng", 
        "id": "sg:person.012302163601.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302163601.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.amc.2013.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003439683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/871845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010107742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1029-242x-2011-123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013924138", 
          "https://doi.org/10.1186/1029-242x-2011-123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0655-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017385034", 
          "https://doi.org/10.1186/s13660-015-0655-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0655-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017385034", 
          "https://doi.org/10.1186/s13660-015-0655-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.06.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021771642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0844-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026742207", 
          "https://doi.org/10.1186/s13660-015-0844-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0844-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026742207", 
          "https://doi.org/10.1186/s13660-015-0844-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04720-1_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029376035", 
          "https://doi.org/10.1007/978-3-319-04720-1_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2011/401428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030260979", 
          "https://doi.org/10.1155/2011/401428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/169061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030745163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2005.07.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036233466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2006.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039321713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0829-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048066655", 
          "https://doi.org/10.1186/s13660-015-0829-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0829-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048066655", 
          "https://doi.org/10.1186/s13660-015-0829-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2015.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049081279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2013.09.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049606427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2010/256796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050206255", 
          "https://doi.org/10.1155/2010/256796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/jmi-06-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073623669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/jmi-06-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073623669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/jmi-06-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073623669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/jmi-06-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073623669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/jmi-06-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073623669"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "By using techniques of real analysis and weight functions, a few equivalent statements of a Hilbert-type integral inequality with the nonhomogeneous kernel in the whole plane are obtained. The constant factor related the extended Hurwitz zeta function is proved to be the best possible. As applications, a few equivalent statements of a Hilbert-type integral inequality with the homogeneous kernel in the whole plane are deduced. We also consider the operator expressions and some corollaries.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10440-018-0195-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028030", 
        "issn": [
          "0167-8019", 
          "1572-9036"
        ], 
        "name": "Acta Applicandae Mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "160"
      }
    ], 
    "name": "On a Hilbert-Type Integral Inequality Related to the Extended Hurwitz Zeta Function in the Whole Plane", 
    "pagination": "67-80", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10440-018-0195-9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "388355c3809a04c25a9903da99eb7b9e4487eaa92c3cc4ed59f8d27f04609f0e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104596544"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10440-018-0195-9", 
      "https://app.dimensions.ai/details/publication/pub.1104596544"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56182_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10440-018-0195-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10440-018-0195-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10440-018-0195-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10440-018-0195-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10440-018-0195-9'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10440-018-0195-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb605c81e97944647991f9315e558cb45
4 schema:citation sg:pub.10.1007/978-3-319-04720-1_26
5 sg:pub.10.1155/2010/256796
6 sg:pub.10.1155/2011/401428
7 sg:pub.10.1186/1029-242x-2011-123
8 sg:pub.10.1186/s13660-015-0655-y
9 sg:pub.10.1186/s13660-015-0829-7
10 sg:pub.10.1186/s13660-015-0844-8
11 https://doi.org/10.1016/j.amc.2013.06.010
12 https://doi.org/10.1016/j.amc.2013.09.040
13 https://doi.org/10.1016/j.amc.2014.06.056
14 https://doi.org/10.1016/j.jmaa.2005.07.071
15 https://doi.org/10.1016/j.jmaa.2006.02.006
16 https://doi.org/10.1016/j.jmaa.2015.04.003
17 https://doi.org/10.1155/2012/871845
18 https://doi.org/10.1155/2014/169061
19 https://doi.org/10.7153/jmi-06-38
20 schema:datePublished 2019-04
21 schema:datePublishedReg 2019-04-01
22 schema:description By using techniques of real analysis and weight functions, a few equivalent statements of a Hilbert-type integral inequality with the nonhomogeneous kernel in the whole plane are obtained. The constant factor related the extended Hurwitz zeta function is proved to be the best possible. As applications, a few equivalent statements of a Hilbert-type integral inequality with the homogeneous kernel in the whole plane are deduced. We also consider the operator expressions and some corollaries.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N396f149d2d4d434d8987123ef0b4d134
27 Nb3ce25d26e9a43e6acddd52c725c4c67
28 sg:journal.1028030
29 schema:name On a Hilbert-Type Integral Inequality Related to the Extended Hurwitz Zeta Function in the Whole Plane
30 schema:pagination 67-80
31 schema:productId N2b2188bb74d1474db241796192b847c5
32 N2c48cfb4272f4f4794fb415f9250336a
33 N6d196098bd204b5b9e6619398d255d68
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104596544
35 https://doi.org/10.1007/s10440-018-0195-9
36 schema:sdDatePublished 2019-04-15T09:21
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nf3fdd2c13010476bb9010b3581281026
39 schema:url https://link.springer.com/10.1007%2Fs10440-018-0195-9
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N2b2188bb74d1474db241796192b847c5 schema:name doi
44 schema:value 10.1007/s10440-018-0195-9
45 rdf:type schema:PropertyValue
46 N2c48cfb4272f4f4794fb415f9250336a schema:name dimensions_id
47 schema:value pub.1104596544
48 rdf:type schema:PropertyValue
49 N396f149d2d4d434d8987123ef0b4d134 schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 N6d196098bd204b5b9e6619398d255d68 schema:name readcube_id
52 schema:value 388355c3809a04c25a9903da99eb7b9e4487eaa92c3cc4ed59f8d27f04609f0e
53 rdf:type schema:PropertyValue
54 Nb3ce25d26e9a43e6acddd52c725c4c67 schema:volumeNumber 160
55 rdf:type schema:PublicationVolume
56 Nb605c81e97944647991f9315e558cb45 rdf:first sg:person.010537175231.66
57 rdf:rest Nc86714cf430e4307945c1b0fbb58787c
58 Nc86714cf430e4307945c1b0fbb58787c rdf:first sg:person.012302163601.99
59 rdf:rest rdf:nil
60 Nf3fdd2c13010476bb9010b3581281026 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1028030 schema:issn 0167-8019
69 1572-9036
70 schema:name Acta Applicandae Mathematicae
71 rdf:type schema:Periodical
72 sg:person.010537175231.66 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
73 schema:familyName Rassias
74 schema:givenName Michael Th.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537175231.66
76 rdf:type schema:Person
77 sg:person.012302163601.99 schema:affiliation https://www.grid.ac/institutes/grid.440716.0
78 schema:familyName Yang
79 schema:givenName Bicheng
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302163601.99
81 rdf:type schema:Person
82 sg:pub.10.1007/978-3-319-04720-1_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029376035
83 https://doi.org/10.1007/978-3-319-04720-1_26
84 rdf:type schema:CreativeWork
85 sg:pub.10.1155/2010/256796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050206255
86 https://doi.org/10.1155/2010/256796
87 rdf:type schema:CreativeWork
88 sg:pub.10.1155/2011/401428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030260979
89 https://doi.org/10.1155/2011/401428
90 rdf:type schema:CreativeWork
91 sg:pub.10.1186/1029-242x-2011-123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013924138
92 https://doi.org/10.1186/1029-242x-2011-123
93 rdf:type schema:CreativeWork
94 sg:pub.10.1186/s13660-015-0655-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017385034
95 https://doi.org/10.1186/s13660-015-0655-y
96 rdf:type schema:CreativeWork
97 sg:pub.10.1186/s13660-015-0829-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048066655
98 https://doi.org/10.1186/s13660-015-0829-7
99 rdf:type schema:CreativeWork
100 sg:pub.10.1186/s13660-015-0844-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026742207
101 https://doi.org/10.1186/s13660-015-0844-8
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.amc.2013.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003439683
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.amc.2013.09.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049606427
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.amc.2014.06.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021771642
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.jmaa.2005.07.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036233466
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jmaa.2006.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039321713
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jmaa.2015.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049081279
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1155/2012/871845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010107742
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1155/2014/169061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030745163
118 rdf:type schema:CreativeWork
119 https://doi.org/10.7153/jmi-06-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073623669
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
122 schema:name Institute for Advanced Study Program in Interdisciplinary Studies, 1 Einstein Dr, 08540, Princeton, NJ, USA
123 Institute of Mathematics, University of Zurich, 8057, Zurich, Switzerland
124 Moscow Institute of Physics and Technology, Institutskiy per, d. 9, 141700, Dolgoprudny, Russia
125 rdf:type schema:Organization
126 https://www.grid.ac/institutes/grid.440716.0 schema:alternateName Guangdong Institute of Education
127 schema:name Department of Mathematics, Guangdong University of Education, 510303, Guangzhou, Guangdong, P.R. China
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...