Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-04

AUTHORS

Brigita Ferčec, Jaume Giné, Yirong Liu, Valery G. Romanovski

ABSTRACT

In this paper we investigate the integrability problem for the two-dimensional Lotka-Volterra complex quartic systems which are linear systems perturbed by fourth degree homogeneous polynomials, that is, we consider systems of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot{x}=x(1-a_{30}x^{3}-a_{21} x^{2} y-a_{12}x y^{2} -a_{03}y^{3})$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot{y}=-y(1-b_{30}x^{3}-b_{21} x^{2} y-b_{12}x y^{2}-b_{03} y^{3})$\end{document}. Conditions for the integrability of this system are found. From them the center conditions for corresponding real system can be derived. The study relays on making use of algorithms of computational algebra based on the Groebner basis theory. To simplify laborious manipulations with polynomial modular arithmetics is involved. More... »

PAGES

107-122

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10440-012-9772-5

DOI

http://dx.doi.org/10.1007/s10440-012-9772-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000827112


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maribor", 
          "id": "https://www.grid.ac/institutes/grid.8647.d", 
          "name": [
            "Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, 2000, Maribor, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fer\u010dec", 
        "givenName": "Brigita", 
        "id": "sg:person.014736123773.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014736123773.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lleida", 
          "id": "https://www.grid.ac/institutes/grid.15043.33", 
          "name": [
            "Departament de Matem\u00e0tica, Universitat de Lleida, Av. Jaume II, 69, 25001, Lleida, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gin\u00e9", 
        "givenName": "Jaume", 
        "id": "sg:person.014527501361.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527501361.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Mathematics, Central South University, 410083, Changsha, Hunan, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yirong", 
        "id": "sg:person.014507310723.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507310723.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maribor", 
          "id": "https://www.grid.ac/institutes/grid.8647.d", 
          "name": [
            "Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, 2000, Maribor, Slovenia", 
            "Faculty of Natural Science and Mathematics, University of Maribor, Koro\u0161ka cesta 160, 2000, Maribor, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romanovski", 
        "givenName": "Valery G.", 
        "id": "sg:person.016604460263.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016604460263.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-15582-6_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004705958", 
          "https://doi.org/10.1007/978-3-642-15582-6_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15582-6_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004705958", 
          "https://doi.org/10.1007/978-3-642-15582-6_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2009.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005257715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006809951", 
          "https://doi.org/10.1007/bf01759019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006809951", 
          "https://doi.org/10.1007/bf01759019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/40/22/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007830914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(91)90142-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010331370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-4497(99)80015-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015553337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/258726.258823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017422774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2010.12.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025708131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2007.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029489920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0747-7171(88)80040-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032120768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.1998.3621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039346935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024643521094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039947414", 
          "https://doi.org/10.1023/a:1024643521094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(99)00364-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040253419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0898-1221(02)00161-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042026146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1089292.1089293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042919941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00030-008-7044-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043048990", 
          "https://doi.org/10.1007/s00030-008-7044-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1049529071", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2181-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049529071", 
          "https://doi.org/10.1007/978-1-4757-2181-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2181-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049529071", 
          "https://doi.org/10.1007/978-1-4757-2181-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0396(03)00190-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052333562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0396(03)00190-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052333562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5565/publmat_40196_03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072982460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5565/publmat_41297_02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072982509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5565/publmat_45101_04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072982619"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "In this paper we investigate the integrability problem for the two-dimensional Lotka-Volterra complex quartic systems which are linear systems perturbed by fourth degree homogeneous polynomials, that is, we consider systems of the form \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\dot{x}=x(1-a_{30}x^{3}-a_{21} x^{2} y-a_{12}x y^{2} -a_{03}y^{3})$\\end{document}, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\dot{y}=-y(1-b_{30}x^{3}-b_{21} x^{2} y-b_{12}x y^{2}-b_{03} y^{3})$\\end{document}. Conditions for the integrability of this system are found. From them the center conditions for corresponding real system can be derived. The study relays on making use of algorithms of computational algebra based on the Groebner basis theory. To simplify laborious manipulations with polynomial modular arithmetics is involved.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10440-012-9772-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028030", 
        "issn": [
          "0167-8019", 
          "1572-9036"
        ], 
        "name": "Acta Applicandae Mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "124"
      }
    ], 
    "name": "Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities", 
    "pagination": "107-122", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03f0c323b8f5ba694a3b1b2ae9019ce057f3620f648a3159e7f1cf0b47aa827f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10440-012-9772-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000827112"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10440-012-9772-5", 
      "https://app.dimensions.ai/details/publication/pub.1000827112"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10440-012-9772-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10440-012-9772-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10440-012-9772-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10440-012-9772-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10440-012-9772-5'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10440-012-9772-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N724515c321ac4d7ab705fcb7d4918e90
4 schema:citation sg:pub.10.1007/978-1-4757-2181-2
5 sg:pub.10.1007/978-3-642-15582-6_17
6 sg:pub.10.1007/bf01759019
7 sg:pub.10.1007/s00030-008-7044-x
8 sg:pub.10.1023/a:1024643521094
9 https://app.dimensions.ai/details/publication/pub.1049529071
10 https://doi.org/10.1006/jdeq.1998.3621
11 https://doi.org/10.1016/0022-0396(91)90142-v
12 https://doi.org/10.1016/j.camwa.2010.12.069
13 https://doi.org/10.1016/j.na.2007.07.009
14 https://doi.org/10.1016/j.nonrwa.2009.06.002
15 https://doi.org/10.1016/s0007-4497(99)80015-3
16 https://doi.org/10.1016/s0022-0396(03)00190-6
17 https://doi.org/10.1016/s0377-0427(99)00364-7
18 https://doi.org/10.1016/s0747-7171(88)80040-3
19 https://doi.org/10.1016/s0898-1221(02)00161-x
20 https://doi.org/10.1088/1751-8113/40/22/010
21 https://doi.org/10.1145/1089292.1089293
22 https://doi.org/10.1145/258726.258823
23 https://doi.org/10.5565/publmat_40196_03
24 https://doi.org/10.5565/publmat_41297_02
25 https://doi.org/10.5565/publmat_45101_04
26 schema:datePublished 2013-04
27 schema:datePublishedReg 2013-04-01
28 schema:description In this paper we investigate the integrability problem for the two-dimensional Lotka-Volterra complex quartic systems which are linear systems perturbed by fourth degree homogeneous polynomials, that is, we consider systems of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot{x}=x(1-a_{30}x^{3}-a_{21} x^{2} y-a_{12}x y^{2} -a_{03}y^{3})$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot{y}=-y(1-b_{30}x^{3}-b_{21} x^{2} y-b_{12}x y^{2}-b_{03} y^{3})$\end{document}. Conditions for the integrability of this system are found. From them the center conditions for corresponding real system can be derived. The study relays on making use of algorithms of computational algebra based on the Groebner basis theory. To simplify laborious manipulations with polynomial modular arithmetics is involved.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Na60eceab5e144455a0477f80a20c8374
33 Ncb4cda7fd99640728683d6f03fe851ea
34 sg:journal.1028030
35 schema:name Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities
36 schema:pagination 107-122
37 schema:productId N6d53cbc466d24d37a6d80c71a1a00c03
38 N861cf16fbde44135bb7870c6de723be6
39 Nfc070f8a25964fb592d049abdd3b4a16
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000827112
41 https://doi.org/10.1007/s10440-012-9772-5
42 schema:sdDatePublished 2019-04-10T19:08
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nc66f326a71e44f34ae41ffbc95f88f45
45 schema:url http://link.springer.com/10.1007%2Fs10440-012-9772-5
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N6d53cbc466d24d37a6d80c71a1a00c03 schema:name readcube_id
50 schema:value 03f0c323b8f5ba694a3b1b2ae9019ce057f3620f648a3159e7f1cf0b47aa827f
51 rdf:type schema:PropertyValue
52 N724515c321ac4d7ab705fcb7d4918e90 rdf:first sg:person.014736123773.02
53 rdf:rest Na49df239582048509d52481bb7c10386
54 N861cf16fbde44135bb7870c6de723be6 schema:name dimensions_id
55 schema:value pub.1000827112
56 rdf:type schema:PropertyValue
57 N9b02178d98a24101a0f5232896c5b9e4 rdf:first sg:person.014507310723.47
58 rdf:rest Nd791b5e48e23470285b5f3ebb32cefb9
59 Na49df239582048509d52481bb7c10386 rdf:first sg:person.014527501361.05
60 rdf:rest N9b02178d98a24101a0f5232896c5b9e4
61 Na60eceab5e144455a0477f80a20c8374 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 Nc66f326a71e44f34ae41ffbc95f88f45 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Ncb4cda7fd99640728683d6f03fe851ea schema:volumeNumber 124
66 rdf:type schema:PublicationVolume
67 Nd791b5e48e23470285b5f3ebb32cefb9 rdf:first sg:person.016604460263.03
68 rdf:rest rdf:nil
69 Nfc070f8a25964fb592d049abdd3b4a16 schema:name doi
70 schema:value 10.1007/s10440-012-9772-5
71 rdf:type schema:PropertyValue
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1028030 schema:issn 0167-8019
79 1572-9036
80 schema:name Acta Applicandae Mathematicae
81 rdf:type schema:Periodical
82 sg:person.014507310723.47 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
83 schema:familyName Liu
84 schema:givenName Yirong
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507310723.47
86 rdf:type schema:Person
87 sg:person.014527501361.05 schema:affiliation https://www.grid.ac/institutes/grid.15043.33
88 schema:familyName Giné
89 schema:givenName Jaume
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527501361.05
91 rdf:type schema:Person
92 sg:person.014736123773.02 schema:affiliation https://www.grid.ac/institutes/grid.8647.d
93 schema:familyName Ferčec
94 schema:givenName Brigita
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014736123773.02
96 rdf:type schema:Person
97 sg:person.016604460263.03 schema:affiliation https://www.grid.ac/institutes/grid.8647.d
98 schema:familyName Romanovski
99 schema:givenName Valery G.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016604460263.03
101 rdf:type schema:Person
102 sg:pub.10.1007/978-1-4757-2181-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049529071
103 https://doi.org/10.1007/978-1-4757-2181-2
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-642-15582-6_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004705958
106 https://doi.org/10.1007/978-3-642-15582-6_17
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01759019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006809951
109 https://doi.org/10.1007/bf01759019
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00030-008-7044-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043048990
112 https://doi.org/10.1007/s00030-008-7044-x
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/a:1024643521094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039947414
115 https://doi.org/10.1023/a:1024643521094
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1049529071 schema:CreativeWork
118 https://doi.org/10.1006/jdeq.1998.3621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039346935
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0022-0396(91)90142-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1010331370
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.camwa.2010.12.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025708131
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.na.2007.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029489920
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.nonrwa.2009.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005257715
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0007-4497(99)80015-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015553337
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0022-0396(03)00190-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052333562
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0377-0427(99)00364-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040253419
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0747-7171(88)80040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032120768
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0898-1221(02)00161-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042026146
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/1751-8113/40/22/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007830914
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/1089292.1089293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042919941
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/258726.258823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017422774
143 rdf:type schema:CreativeWork
144 https://doi.org/10.5565/publmat_40196_03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072982460
145 rdf:type schema:CreativeWork
146 https://doi.org/10.5565/publmat_41297_02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072982509
147 rdf:type schema:CreativeWork
148 https://doi.org/10.5565/publmat_45101_04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072982619
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.15043.33 schema:alternateName University of Lleida
151 schema:name Departament de Matemàtica, Universitat de Lleida, Av. Jaume II, 69, 25001, Lleida, Spain
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
154 schema:name School of Mathematics, Central South University, 410083, Changsha, Hunan, P.R. China
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.8647.d schema:alternateName University of Maribor
157 schema:name Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, 2000, Maribor, Slovenia
158 Faculty of Natural Science and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...