A Bag of Wavelet Features for Snore Sound Classification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Kun Qian, Maximilian Schmitt, Christoph Janott, Zixing Zhang, Clemens Heiser, Winfried Hohenhorst, Michael Herzog, Werner Hemmert, Björn Schuller

ABSTRACT

Snore sound (SnS) classification can support a targeted surgical approach to sleep related breathing disorders. Using machine listening methods, we aim to find the location of obstruction and vibration within a subject's upper airway. Wavelet features have been demonstrated to be efficient in the recognition of SnSs in previous studies. In this work, we use a bag-of-audio-words approach to enhance the low-level wavelet features extracted from SnS data. A Naïve Bayes model was selected as the classifier based on its superiority in initial experiments. We use SnS data collected from 219 independent subjects under drug-induced sleep endoscopy performed at three medical centres. The unweighted average recall achieved by our proposed method is 69.4%, which significantly ([Formula: see text] one-tailed z-test) outperforms the official baseline (58.5%), and beats the winner (64.2%) of the INTERSPEECH COMPARE Challenge 2017 Snoring sub-challenge. In addition, the conventionally used features like formants, mel-scale frequency cepstral coefficients, subband energy ratios, spectral frequency features, and the features extracted by the OPENSMILE toolkit are compared with our proposed feature set. The experimental results demonstrate the effectiveness of the proposed method in SnS classification. More... »

PAGES

1000-1011

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-019-02217-0

DOI

http://dx.doi.org/10.1007/s10439-019-02217-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111775503

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30701397


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Machine Intelligence & Signal Processing Group, MMK, Technische Universit\u00e4t M\u00fcnchen, Arcisstr. 21, 80333, Munich, Germany", 
            "ZD.B Chair of Embedded Intelligence for Health Care & Wellbeing, Universit\u00e4t Augsburg, Eichleitnerstr. 30, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Kun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "ZD.B Chair of Embedded Intelligence for Health Care & Wellbeing, Universit\u00e4t Augsburg, Eichleitnerstr. 30, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmitt", 
        "givenName": "Maximilian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Munich School of Bioengineering, Technische Universit\u00e4t M\u00fcnchen, Boltzmannstr. 11, 85748, Garching, Germany", 
            "audEERING GmbH, 82206, Gilching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janott", 
        "givenName": "Christoph", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "GLAM \u2013 Group on Language, Audio & Music, Department of Computing, Imperial College London, 180 Queens\u2019 Gate, Huxley Bldg., SW7 2AZ, London, UK", 
            "audEERING GmbH, 82206, Gilching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zixing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Otorhinolaryngology/Head and Neck Surgery, Klinikum rechts der Isar, Technische Universit\u00e4t M\u00fcnchen, Ismaningerstr. 22, 81675, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heiser", 
        "givenName": "Clemens", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alfried Krupp Hospital", 
          "id": "https://www.grid.ac/institutes/grid.476313.4", 
          "name": [
            "Department of Otorhinolaryngology/Head and Neck Surgery, Alfried Krupp Krankenhaus, Alfried-Krupp-Str. 21, 45131, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hohenhorst", 
        "givenName": "Winfried", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carl-Thiem-Klinikum Cottbus", 
          "id": "https://www.grid.ac/institutes/grid.460801.b", 
          "name": [
            "Department of Otorhinolaryngology/Head and Neck Surgery, Carl-Thiem-Klinikum Cottbus, Thiemstr. 111, 03048, Cottbus, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herzog", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Munich School of Bioengineering, Technische Universit\u00e4t M\u00fcnchen, Boltzmannstr. 11, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemmert", 
        "givenName": "Werner", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "ZD.B Chair of Embedded Intelligence for Health Care & Wellbeing, Universit\u00e4t Augsburg, Eichleitnerstr. 30, 86159, Augsburg, Germany", 
            "GLAM \u2013 Group on Language, Audio & Music, Department of Computing, Imperial College London, 180 Queens\u2019 Gate, Huxley Bldg., SW7 2AZ, London, UK", 
            "audEERING GmbH, 82206, Gilching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuller", 
        "givenName": "Bj\u00f6rn", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10439-016-1720-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000708920", 
          "https://doi.org/10.1007/s10439-016-1720-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-016-1720-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000708920", 
          "https://doi.org/10.1007/s10439-016-1720-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1183/13993003.01618-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1183/13993003.01618-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1183/13993003.01618-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199601113340207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002079816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-1028-0_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009181550", 
          "https://doi.org/10.1007/978-94-011-1028-0_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-1028-0_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009181550", 
          "https://doi.org/10.1007/978-94-011-1028-0_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mlg.0b013e31816422ea", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011965489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mlg.0b013e31816422ea", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011965489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kws342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013198569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1013416541", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-85729-495-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013416541", 
          "https://doi.org/10.1007/978-0-85729-495-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-85729-495-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013416541", 
          "https://doi.org/10.1007/978-0-85729-495-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00405-011-1633-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013901958", 
          "https://doi.org/10.1007/s00405-011-1633-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2502081.2502224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014040240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9745-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014532996", 
          "https://doi.org/10.1007/s10439-009-9745-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9745-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014532996", 
          "https://doi.org/10.1007/s10439-009-9745-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9745-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014532996", 
          "https://doi.org/10.1007/s10439-009-9745-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.smrv.2009.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019621374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-012-0692-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020538533", 
          "https://doi.org/10.1007/s10439-012-0692-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1656274.1656278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028526411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005537-200211000-00032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032524300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005537-200211000-00032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032524300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.smrv.2007.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037382339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mhn.2001.118076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039974456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mhn.2001.118076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039974456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mhn.2001.118076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039974456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9744-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040951177", 
          "https://doi.org/10.1007/s10439-009-9744-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9744-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040951177", 
          "https://doi.org/10.1007/s10439-009-9744-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9744-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040951177", 
          "https://doi.org/10.1007/s10439-009-9744-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.smrv.2005.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042318545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-011-0456-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048019518", 
          "https://doi.org/10.1007/s10439-011-0456-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lary.24479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049287158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-27299-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050209890", 
          "https://doi.org/10.1007/978-3-319-27299-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-27299-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050209890", 
          "https://doi.org/10.1007/978-3-319-27299-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053132543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00106-016-0331-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053879297", 
          "https://doi.org/10.1007/s00106-016-0331-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00106-016-0331-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053879297", 
          "https://doi.org/10.1007/s00106-016-0331-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.119732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061098603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/89.222882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061242177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jbhi.2016.2632976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061277333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2010.2061846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2010.2077291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2016.2619675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061530323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2016.7471669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094879961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21437/interspeech.2017-1378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096013231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21437/interspeech.2017-173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096013272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21437/interspeech.2017-1794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096013276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21437/interspeech.2017-43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096013308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21437/interspeech.2017-434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096013310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21437/interspeech.2017-653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096013340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21437/interspeech.2017-905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096013370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21437/interspeech.2016-1124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099085799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2018.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100736568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109387624", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109387624", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Snore sound (SnS) classification can support a targeted surgical approach to sleep related breathing disorders. Using machine listening methods, we aim to find the location of obstruction and vibration within a subject's upper airway. Wavelet features have been demonstrated to be efficient in the recognition of SnSs in previous studies. In this work, we use a bag-of-audio-words approach to enhance the low-level wavelet features extracted from SnS data. A Na\u00efve Bayes model was selected as the classifier based on its superiority in initial experiments. We use SnS data collected from 219 independent subjects under drug-induced sleep endoscopy performed at three medical centres. The unweighted average recall achieved by our proposed method is 69.4%, which significantly ([Formula: see text] one-tailed z-test) outperforms the official baseline (58.5%), and beats the winner (64.2%) of the INTERSPEECH COMPARE Challenge 2017 Snoring sub-challenge. In addition, the conventionally used features like formants, mel-scale frequency cepstral coefficients, subband energy ratios, spectral frequency features, and the features extracted by the OPENSMILE toolkit are compared with our proposed feature set. The experimental results demonstrate the effectiveness of the proposed method in SnS classification.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-019-02217-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3798003", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "A Bag of Wavelet Features for Snore Sound Classification", 
    "pagination": "1000-1011", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8709dee49c4e20a3f26b432b015a0484247a11c9721377c93f3a8a33d0895a56"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30701397"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-019-02217-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111775503"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-019-02217-0", 
      "https://app.dimensions.ai/details/publication/pub.1111775503"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127461_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10439-019-02217-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-019-02217-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-019-02217-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-019-02217-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-019-02217-0'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-019-02217-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf47fd91b5d9942a4ba0e93ff4908a77c
4 schema:citation sg:pub.10.1007/978-0-85729-495-1
5 sg:pub.10.1007/978-3-319-27299-3
6 sg:pub.10.1007/978-94-011-1028-0_18
7 sg:pub.10.1007/s00106-016-0331-7
8 sg:pub.10.1007/s00405-011-1633-8
9 sg:pub.10.1007/s10439-009-9744-8
10 sg:pub.10.1007/s10439-009-9745-7
11 sg:pub.10.1007/s10439-011-0456-5
12 sg:pub.10.1007/s10439-012-0692-3
13 sg:pub.10.1007/s10439-016-1720-5
14 sg:pub.10.1038/nature14539
15 https://app.dimensions.ai/details/publication/pub.1013416541
16 https://app.dimensions.ai/details/publication/pub.1109387624
17 https://doi.org/10.1002/lary.24479
18 https://doi.org/10.1016/j.compbiomed.2018.01.007
19 https://doi.org/10.1016/j.smrv.2005.01.004
20 https://doi.org/10.1016/j.smrv.2007.08.009
21 https://doi.org/10.1016/j.smrv.2009.06.002
22 https://doi.org/10.1056/nejm199601113340207
23 https://doi.org/10.1067/mhn.2001.118076
24 https://doi.org/10.1093/aje/kws342
25 https://doi.org/10.1097/00005537-200211000-00032
26 https://doi.org/10.1097/mlg.0b013e31816422ea
27 https://doi.org/10.1109/18.119732
28 https://doi.org/10.1109/89.222882
29 https://doi.org/10.1109/icassp.2016.7471669
30 https://doi.org/10.1109/jbhi.2016.2632976
31 https://doi.org/10.1109/tbme.2010.2061846
32 https://doi.org/10.1109/tbme.2010.2077291
33 https://doi.org/10.1109/tbme.2016.2619675
34 https://doi.org/10.1145/1656274.1656278
35 https://doi.org/10.1145/2502081.2502224
36 https://doi.org/10.1162/089976698300017197
37 https://doi.org/10.1183/13993003.01618-2015
38 https://doi.org/10.21437/interspeech.2016-1124
39 https://doi.org/10.21437/interspeech.2017-1378
40 https://doi.org/10.21437/interspeech.2017-173
41 https://doi.org/10.21437/interspeech.2017-1794
42 https://doi.org/10.21437/interspeech.2017-43
43 https://doi.org/10.21437/interspeech.2017-434
44 https://doi.org/10.21437/interspeech.2017-653
45 https://doi.org/10.21437/interspeech.2017-905
46 schema:datePublished 2019-04
47 schema:datePublishedReg 2019-04-01
48 schema:description Snore sound (SnS) classification can support a targeted surgical approach to sleep related breathing disorders. Using machine listening methods, we aim to find the location of obstruction and vibration within a subject's upper airway. Wavelet features have been demonstrated to be efficient in the recognition of SnSs in previous studies. In this work, we use a bag-of-audio-words approach to enhance the low-level wavelet features extracted from SnS data. A Naïve Bayes model was selected as the classifier based on its superiority in initial experiments. We use SnS data collected from 219 independent subjects under drug-induced sleep endoscopy performed at three medical centres. The unweighted average recall achieved by our proposed method is 69.4%, which significantly ([Formula: see text] one-tailed z-test) outperforms the official baseline (58.5%), and beats the winner (64.2%) of the INTERSPEECH COMPARE Challenge 2017 Snoring sub-challenge. In addition, the conventionally used features like formants, mel-scale frequency cepstral coefficients, subband energy ratios, spectral frequency features, and the features extracted by the OPENSMILE toolkit are compared with our proposed feature set. The experimental results demonstrate the effectiveness of the proposed method in SnS classification.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf Nc3454d91b3174a329e5d0ea5ccfe1532
53 Nd4915619c9c942f5854f14a073e06b72
54 sg:journal.1087247
55 schema:name A Bag of Wavelet Features for Snore Sound Classification
56 schema:pagination 1000-1011
57 schema:productId N2651abb5153345dcb1789c05d65d82de
58 Nbb47c7aa8595481196d5fa148e351335
59 Nc2db7970baf14ef38fe418f361c72fcf
60 Ncc982b72bd7e4a46ba04857ebd022a96
61 Nf8bed64938784f39a7c423b37a453f72
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111775503
63 https://doi.org/10.1007/s10439-019-02217-0
64 schema:sdDatePublished 2019-04-11T11:47
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N20efe8531b964bc186138235363c7831
67 schema:url https://link.springer.com/10.1007%2Fs10439-019-02217-0
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N20efe8531b964bc186138235363c7831 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N2146e6ff2ab646d4b648fc76f0ad8b42 rdf:first N7fef05517c4a4413afb82fbb116eb049
74 rdf:rest N4555b67ba7654e6885756cef10df4c21
75 N2651abb5153345dcb1789c05d65d82de schema:name dimensions_id
76 schema:value pub.1111775503
77 rdf:type schema:PropertyValue
78 N4555b67ba7654e6885756cef10df4c21 rdf:first Nf289798ac9a44fbc8bb1caf0e87f54c9
79 rdf:rest N521dc8e9c4904783bef728af60e2165f
80 N4cd135ae0f8d40739dfd563c155cc05c schema:affiliation https://www.grid.ac/institutes/grid.6936.a
81 schema:familyName Hemmert
82 schema:givenName Werner
83 rdf:type schema:Person
84 N521dc8e9c4904783bef728af60e2165f rdf:first Ncfceb8dbc3854daebd9b0e2571c8333a
85 rdf:rest Nbd51d509c9a1475793f06ef0d9f76e35
86 N5ca221f0166e41a78d4dbe441f453c87 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
87 schema:familyName Schuller
88 schema:givenName Björn
89 rdf:type schema:Person
90 N5cbd2a9f8f754e68b334e3d202b9d469 rdf:first N4cd135ae0f8d40739dfd563c155cc05c
91 rdf:rest Na0c8afcb18704aef8967eaaa7aa73f2b
92 N5f831cf289064a10b99f1c56f25bf8ca schema:name Department of Otorhinolaryngology/Head and Neck Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
93 rdf:type schema:Organization
94 N604ced2a4ae244c781b6e6d5d596286e schema:affiliation N5f831cf289064a10b99f1c56f25bf8ca
95 schema:familyName Heiser
96 schema:givenName Clemens
97 rdf:type schema:Person
98 N6b9604e14bec40c4a9bafe1e256f476a rdf:first N9478e481730443d7bbb27ce1be41d837
99 rdf:rest Nd4bcd2f1245a45c38723c90af9950df5
100 N7fef05517c4a4413afb82fbb116eb049 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
101 schema:familyName Schmitt
102 schema:givenName Maximilian
103 rdf:type schema:Person
104 N9478e481730443d7bbb27ce1be41d837 schema:affiliation https://www.grid.ac/institutes/grid.476313.4
105 schema:familyName Hohenhorst
106 schema:givenName Winfried
107 rdf:type schema:Person
108 N9adf6431665b4f2e9a53b79204c4d6fe schema:affiliation https://www.grid.ac/institutes/grid.7307.3
109 schema:familyName Qian
110 schema:givenName Kun
111 rdf:type schema:Person
112 Na09c1e163cc84b3c817af743c1f5b05e schema:affiliation https://www.grid.ac/institutes/grid.460801.b
113 schema:familyName Herzog
114 schema:givenName Michael
115 rdf:type schema:Person
116 Na0c8afcb18704aef8967eaaa7aa73f2b rdf:first N5ca221f0166e41a78d4dbe441f453c87
117 rdf:rest rdf:nil
118 Nbb47c7aa8595481196d5fa148e351335 schema:name pubmed_id
119 schema:value 30701397
120 rdf:type schema:PropertyValue
121 Nbd51d509c9a1475793f06ef0d9f76e35 rdf:first N604ced2a4ae244c781b6e6d5d596286e
122 rdf:rest N6b9604e14bec40c4a9bafe1e256f476a
123 Nc2db7970baf14ef38fe418f361c72fcf schema:name nlm_unique_id
124 schema:value 0361512
125 rdf:type schema:PropertyValue
126 Nc3454d91b3174a329e5d0ea5ccfe1532 schema:volumeNumber 47
127 rdf:type schema:PublicationVolume
128 Ncc982b72bd7e4a46ba04857ebd022a96 schema:name doi
129 schema:value 10.1007/s10439-019-02217-0
130 rdf:type schema:PropertyValue
131 Ncfceb8dbc3854daebd9b0e2571c8333a schema:affiliation https://www.grid.ac/institutes/grid.7445.2
132 schema:familyName Zhang
133 schema:givenName Zixing
134 rdf:type schema:Person
135 Nd4915619c9c942f5854f14a073e06b72 schema:issueNumber 4
136 rdf:type schema:PublicationIssue
137 Nd4bcd2f1245a45c38723c90af9950df5 rdf:first Na09c1e163cc84b3c817af743c1f5b05e
138 rdf:rest N5cbd2a9f8f754e68b334e3d202b9d469
139 Nf289798ac9a44fbc8bb1caf0e87f54c9 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
140 schema:familyName Janott
141 schema:givenName Christoph
142 rdf:type schema:Person
143 Nf47fd91b5d9942a4ba0e93ff4908a77c rdf:first N9adf6431665b4f2e9a53b79204c4d6fe
144 rdf:rest N2146e6ff2ab646d4b648fc76f0ad8b42
145 Nf8bed64938784f39a7c423b37a453f72 schema:name readcube_id
146 schema:value 8709dee49c4e20a3f26b432b015a0484247a11c9721377c93f3a8a33d0895a56
147 rdf:type schema:PropertyValue
148 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
149 schema:name Information and Computing Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
152 schema:name Artificial Intelligence and Image Processing
153 rdf:type schema:DefinedTerm
154 sg:grant.3798003 http://pending.schema.org/fundedItem sg:pub.10.1007/s10439-019-02217-0
155 rdf:type schema:MonetaryGrant
156 sg:journal.1087247 schema:issn 0145-3068
157 1573-9686
158 schema:name Annals of Biomedical Engineering
159 rdf:type schema:Periodical
160 sg:pub.10.1007/978-0-85729-495-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013416541
161 https://doi.org/10.1007/978-0-85729-495-1
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-3-319-27299-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050209890
164 https://doi.org/10.1007/978-3-319-27299-3
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-94-011-1028-0_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009181550
167 https://doi.org/10.1007/978-94-011-1028-0_18
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s00106-016-0331-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053879297
170 https://doi.org/10.1007/s00106-016-0331-7
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s00405-011-1633-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013901958
173 https://doi.org/10.1007/s00405-011-1633-8
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s10439-009-9744-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040951177
176 https://doi.org/10.1007/s10439-009-9744-8
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s10439-009-9745-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014532996
179 https://doi.org/10.1007/s10439-009-9745-7
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s10439-011-0456-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048019518
182 https://doi.org/10.1007/s10439-011-0456-5
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s10439-012-0692-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020538533
185 https://doi.org/10.1007/s10439-012-0692-3
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s10439-016-1720-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000708920
188 https://doi.org/10.1007/s10439-016-1720-5
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
191 https://doi.org/10.1038/nature14539
192 rdf:type schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1013416541 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1109387624 schema:CreativeWork
195 https://doi.org/10.1002/lary.24479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049287158
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.compbiomed.2018.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100736568
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.smrv.2005.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042318545
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.smrv.2007.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037382339
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.smrv.2009.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019621374
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1056/nejm199601113340207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002079816
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1067/mhn.2001.118076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039974456
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/aje/kws342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013198569
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1097/00005537-200211000-00032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032524300
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1097/mlg.0b013e31816422ea schema:sameAs https://app.dimensions.ai/details/publication/pub.1011965489
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/18.119732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061098603
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/89.222882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061242177
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/icassp.2016.7471669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094879961
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/jbhi.2016.2632976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061277333
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/tbme.2010.2061846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528119
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tbme.2010.2077291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528156
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/tbme.2016.2619675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061530323
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1145/1656274.1656278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526411
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1145/2502081.2502224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014040240
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1162/089976698300017197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053132543
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1183/13993003.01618-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754778
236 rdf:type schema:CreativeWork
237 https://doi.org/10.21437/interspeech.2016-1124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099085799
238 rdf:type schema:CreativeWork
239 https://doi.org/10.21437/interspeech.2017-1378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096013231
240 rdf:type schema:CreativeWork
241 https://doi.org/10.21437/interspeech.2017-173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096013272
242 rdf:type schema:CreativeWork
243 https://doi.org/10.21437/interspeech.2017-1794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096013276
244 rdf:type schema:CreativeWork
245 https://doi.org/10.21437/interspeech.2017-43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096013308
246 rdf:type schema:CreativeWork
247 https://doi.org/10.21437/interspeech.2017-434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096013310
248 rdf:type schema:CreativeWork
249 https://doi.org/10.21437/interspeech.2017-653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096013340
250 rdf:type schema:CreativeWork
251 https://doi.org/10.21437/interspeech.2017-905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096013370
252 rdf:type schema:CreativeWork
253 https://www.grid.ac/institutes/grid.460801.b schema:alternateName Carl-Thiem-Klinikum Cottbus
254 schema:name Department of Otorhinolaryngology/Head and Neck Surgery, Carl-Thiem-Klinikum Cottbus, Thiemstr. 111, 03048, Cottbus, Germany
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.476313.4 schema:alternateName Alfried Krupp Hospital
257 schema:name Department of Otorhinolaryngology/Head and Neck Surgery, Alfried Krupp Krankenhaus, Alfried-Krupp-Str. 21, 45131, Essen, Germany
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
260 schema:name Munich School of Bioengineering, Technische Universität München, Boltzmannstr. 11, 85748, Garching, Germany
261 audEERING GmbH, 82206, Gilching, Germany
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
264 schema:name Machine Intelligence & Signal Processing Group, MMK, Technische Universität München, Arcisstr. 21, 80333, Munich, Germany
265 ZD.B Chair of Embedded Intelligence for Health Care & Wellbeing, Universität Augsburg, Eichleitnerstr. 30, 86159, Augsburg, Germany
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
268 schema:name GLAM – Group on Language, Audio & Music, Department of Computing, Imperial College London, 180 Queens’ Gate, Huxley Bldg., SW7 2AZ, London, UK
269 ZD.B Chair of Embedded Intelligence for Health Care & Wellbeing, Universität Augsburg, Eichleitnerstr. 30, 86159, Augsburg, Germany
270 audEERING GmbH, 82206, Gilching, Germany
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...