Linking Physiological Biomarkers of Ventilator-Induced Lung Injury to a Rich-Get-Richer Mechanism of Injury Progression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Vitor Mori, Bradford J. Smith, Bela Suki, Jason H. T. Bates

ABSTRACT

Mechanical ventilation is a crucial tool in the management of acute respiratory distress syndrome, yet it may itself also further damage the lung in a phenomenon known as ventilator-induced lung injury (VILI). We have previously shown in mice that volutrauma and atelectrauma act synergistically to cause VILI. We have also postulated that this synergy arises because of a rich-get-richer mechanism in which repetitive lung recruitment generates initial small holes in the blood-gas barrier which are then expanded by over-distension in a manner that favors large holes over small ones. In order to understand the causal link between this process and the derangements in lung mechanics associated with VILI, we developed a mathematical model that incorporates both atelectrauma and volutrauma to predict how the propensity of the lung to derecruit depends on the accumulation of plasma-derived fluid and proteins in the airspaces. We found that the model accurately predicts derecruitment in mice with experimentally induced VILI. More... »

PAGES

1-8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-018-02165-1

DOI

http://dx.doi.org/10.1007/s10439-018-02165-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109818460

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30421177


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1116", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sao Paulo", 
          "id": "https://www.grid.ac/institutes/grid.11899.38", 
          "name": [
            "Department of Medicine, Vermont Lung Center, University of Vermont College of Medicine, 149 Beaumont Ave, HSRF 228, 05405, Burlington, VT, USA", 
            "Department of Telecommunications and Control Engineering, University of Sao Paulo, Sao Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mori", 
        "givenName": "Vitor", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Anschutz Medical Campus", 
          "id": "https://www.grid.ac/institutes/grid.430503.1", 
          "name": [
            "Department of Bioengineering, University of Colorado Denver, 80045, Aurora, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Bradford J.", 
        "id": "sg:person.01176032756.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176032756.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suki", 
        "givenName": "Bela", 
        "id": "sg:person.0730323706.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vermont", 
          "id": "https://www.grid.ac/institutes/grid.59062.38", 
          "name": [
            "Department of Medicine, Vermont Lung Center, University of Vermont College of Medicine, 149 Beaumont Ave, HSRF 228, 05405, Burlington, VT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bates", 
        "givenName": "Jason H. T.", 
        "id": "sg:person.0634072250.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634072250.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1164/ajrccm.157.1.9604014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000631575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra1208707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001840272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-010-0237-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003110604", 
          "https://doi.org/10.1007/s10439-010-0237-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-012-0693-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003158918", 
          "https://doi.org/10.1007/s10439-012-0693-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplung.00265.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011831164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplung.00361.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018732949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm196808292790902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023266177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplung.00483.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024918488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200005043421801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026999880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chest.2016.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030769226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(99)00291-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031778360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm.163.6.2004035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032123582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200005043421806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046585288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/rccm.200408-1036so", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047518394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00270.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051353945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.90806.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051457687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00526.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063198590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.2000.89.6.2490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074731821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.72.1.168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076894305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1987.62.2.403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079820532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1984.57.5.1319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081792704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplung.1994.267.6.l728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082518293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fphys.2017.00466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090371534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-017-5024-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099731693", 
          "https://doi.org/10.1007/s00134-017-5024-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0193934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101828648"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Mechanical ventilation is a crucial tool in the management of acute respiratory distress syndrome, yet it may itself also further damage the lung in a phenomenon known as ventilator-induced lung injury (VILI). We have previously shown in mice that volutrauma and atelectrauma act synergistically to cause VILI. We have also postulated that this synergy arises because of a rich-get-richer mechanism in which repetitive lung recruitment generates initial small holes in the blood-gas barrier which are then expanded by over-distension in a manner that favors large holes over small ones. In order to understand the causal link between this process and the derangements in lung mechanics associated with VILI, we developed a mathematical model that incorporates both atelectrauma and volutrauma to predict how the propensity of the lung to derecruit depends on the accumulation of plasma-derived fluid and proteins in the airspaces. We found that the model accurately predicts derecruitment in mice with experimentally induced VILI.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-018-02165-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4177147", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3803081", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6540958", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7569850", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Linking Physiological Biomarkers of Ventilator-Induced Lung Injury to a Rich-Get-Richer Mechanism of Injury Progression", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "42c45fb01501b4835c8f743881a375c43810a6dc3dacb7704556add83612ccb5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30421177"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-018-02165-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109818460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-018-02165-1", 
      "https://app.dimensions.ai/details/publication/pub.1109818460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000610.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10439-018-02165-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-018-02165-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-018-02165-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-018-02165-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-018-02165-1'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-018-02165-1 schema:about anzsrc-for:11
2 anzsrc-for:1116
3 schema:author Ne65617bdb0894d1aa9369d2d70932dce
4 schema:citation sg:pub.10.1007/s00134-017-5024-5
5 sg:pub.10.1007/s10439-010-0237-6
6 sg:pub.10.1007/s10439-012-0693-2
7 https://doi.org/10.1016/j.chest.2016.07.019
8 https://doi.org/10.1016/s0378-4371(99)00291-5
9 https://doi.org/10.1056/nejm196808292790902
10 https://doi.org/10.1056/nejm200005043421801
11 https://doi.org/10.1056/nejm200005043421806
12 https://doi.org/10.1056/nejmra1208707
13 https://doi.org/10.1126/science.286.5439.509
14 https://doi.org/10.1152/ajplung.00265.2010
15 https://doi.org/10.1152/ajplung.00361.2009
16 https://doi.org/10.1152/ajplung.00483.2006
17 https://doi.org/10.1152/ajplung.1994.267.6.l728
18 https://doi.org/10.1152/jappl.1984.57.5.1319
19 https://doi.org/10.1152/jappl.1987.62.2.403
20 https://doi.org/10.1152/jappl.1992.72.1.168
21 https://doi.org/10.1152/jappl.2000.89.6.2490
22 https://doi.org/10.1152/japplphysiol.00270.2003
23 https://doi.org/10.1152/japplphysiol.00526.2016
24 https://doi.org/10.1152/japplphysiol.90806.2008
25 https://doi.org/10.1164/ajrccm.157.1.9604014
26 https://doi.org/10.1164/ajrccm.163.6.2004035
27 https://doi.org/10.1164/rccm.200408-1036so
28 https://doi.org/10.1371/journal.pone.0193934
29 https://doi.org/10.3389/fphys.2017.00466
30 schema:datePublished 2019-02
31 schema:datePublishedReg 2019-02-01
32 schema:description Mechanical ventilation is a crucial tool in the management of acute respiratory distress syndrome, yet it may itself also further damage the lung in a phenomenon known as ventilator-induced lung injury (VILI). We have previously shown in mice that volutrauma and atelectrauma act synergistically to cause VILI. We have also postulated that this synergy arises because of a rich-get-richer mechanism in which repetitive lung recruitment generates initial small holes in the blood-gas barrier which are then expanded by over-distension in a manner that favors large holes over small ones. In order to understand the causal link between this process and the derangements in lung mechanics associated with VILI, we developed a mathematical model that incorporates both atelectrauma and volutrauma to predict how the propensity of the lung to derecruit depends on the accumulation of plasma-derived fluid and proteins in the airspaces. We found that the model accurately predicts derecruitment in mice with experimentally induced VILI.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf sg:journal.1087247
37 schema:name Linking Physiological Biomarkers of Ventilator-Induced Lung Injury to a Rich-Get-Richer Mechanism of Injury Progression
38 schema:pagination 1-8
39 schema:productId N309a6aa0307d4618bdda2a59e72145ef
40 N5e24a8d2e1f8499483cf3642c67a809a
41 N89614559b43249d2bc418a7f8db6a35f
42 Nb07ada85952d486296bd363133fd14e6
43 Nb84f91ece3ea489ab3ce7056744979e7
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109818460
45 https://doi.org/10.1007/s10439-018-02165-1
46 schema:sdDatePublished 2019-04-11T00:32
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N2e6cf0d45f0b4784812f15e50cb3cb7f
49 schema:url https://link.springer.com/10.1007%2Fs10439-018-02165-1
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1345e22425be490f82838ba0ef94d055 rdf:first sg:person.0730323706.34
54 rdf:rest Nfb012d19ccbc4276aaf42828a905b27c
55 N2e6cf0d45f0b4784812f15e50cb3cb7f schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N309a6aa0307d4618bdda2a59e72145ef schema:name nlm_unique_id
58 schema:value 0361512
59 rdf:type schema:PropertyValue
60 N5e24a8d2e1f8499483cf3642c67a809a schema:name pubmed_id
61 schema:value 30421177
62 rdf:type schema:PropertyValue
63 N89614559b43249d2bc418a7f8db6a35f schema:name dimensions_id
64 schema:value pub.1109818460
65 rdf:type schema:PropertyValue
66 Nb07ada85952d486296bd363133fd14e6 schema:name doi
67 schema:value 10.1007/s10439-018-02165-1
68 rdf:type schema:PropertyValue
69 Nb84f91ece3ea489ab3ce7056744979e7 schema:name readcube_id
70 schema:value 42c45fb01501b4835c8f743881a375c43810a6dc3dacb7704556add83612ccb5
71 rdf:type schema:PropertyValue
72 Ne65617bdb0894d1aa9369d2d70932dce rdf:first Nfcd801d29f8a48b98e6d5d8d79cfe085
73 rdf:rest Nf5456d8891bd47b6a674833dba2126ed
74 Nf5456d8891bd47b6a674833dba2126ed rdf:first sg:person.01176032756.06
75 rdf:rest N1345e22425be490f82838ba0ef94d055
76 Nfb012d19ccbc4276aaf42828a905b27c rdf:first sg:person.0634072250.97
77 rdf:rest rdf:nil
78 Nfcd801d29f8a48b98e6d5d8d79cfe085 schema:affiliation https://www.grid.ac/institutes/grid.11899.38
79 schema:familyName Mori
80 schema:givenName Vitor
81 rdf:type schema:Person
82 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
83 schema:name Medical and Health Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:1116 schema:inDefinedTermSet anzsrc-for:
86 schema:name Medical Physiology
87 rdf:type schema:DefinedTerm
88 sg:grant.3803081 http://pending.schema.org/fundedItem sg:pub.10.1007/s10439-018-02165-1
89 rdf:type schema:MonetaryGrant
90 sg:grant.4177147 http://pending.schema.org/fundedItem sg:pub.10.1007/s10439-018-02165-1
91 rdf:type schema:MonetaryGrant
92 sg:grant.6540958 http://pending.schema.org/fundedItem sg:pub.10.1007/s10439-018-02165-1
93 rdf:type schema:MonetaryGrant
94 sg:grant.7569850 http://pending.schema.org/fundedItem sg:pub.10.1007/s10439-018-02165-1
95 rdf:type schema:MonetaryGrant
96 sg:journal.1087247 schema:issn 0145-3068
97 1573-9686
98 schema:name Annals of Biomedical Engineering
99 rdf:type schema:Periodical
100 sg:person.01176032756.06 schema:affiliation https://www.grid.ac/institutes/grid.430503.1
101 schema:familyName Smith
102 schema:givenName Bradford J.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176032756.06
104 rdf:type schema:Person
105 sg:person.0634072250.97 schema:affiliation https://www.grid.ac/institutes/grid.59062.38
106 schema:familyName Bates
107 schema:givenName Jason H. T.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634072250.97
109 rdf:type schema:Person
110 sg:person.0730323706.34 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
111 schema:familyName Suki
112 schema:givenName Bela
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34
114 rdf:type schema:Person
115 sg:pub.10.1007/s00134-017-5024-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099731693
116 https://doi.org/10.1007/s00134-017-5024-5
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10439-010-0237-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003110604
119 https://doi.org/10.1007/s10439-010-0237-6
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10439-012-0693-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003158918
122 https://doi.org/10.1007/s10439-012-0693-2
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.chest.2016.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030769226
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0378-4371(99)00291-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031778360
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1056/nejm196808292790902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023266177
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1056/nejm200005043421801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026999880
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1056/nejm200005043421806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046585288
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1056/nejmra1208707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001840272
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1152/ajplung.00265.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011831164
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1152/ajplung.00361.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018732949
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1152/ajplung.00483.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024918488
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1152/ajplung.1994.267.6.l728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082518293
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1152/jappl.1984.57.5.1319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081792704
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1152/jappl.1987.62.2.403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079820532
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1152/jappl.1992.72.1.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076894305
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1152/jappl.2000.89.6.2490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074731821
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1152/japplphysiol.00270.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051353945
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1152/japplphysiol.00526.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063198590
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1152/japplphysiol.90806.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051457687
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1164/ajrccm.157.1.9604014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000631575
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1164/ajrccm.163.6.2004035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032123582
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1164/rccm.200408-1036so schema:sameAs https://app.dimensions.ai/details/publication/pub.1047518394
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1371/journal.pone.0193934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101828648
167 rdf:type schema:CreativeWork
168 https://doi.org/10.3389/fphys.2017.00466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090371534
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.11899.38 schema:alternateName University of Sao Paulo
171 schema:name Department of Medicine, Vermont Lung Center, University of Vermont College of Medicine, 149 Beaumont Ave, HSRF 228, 05405, Burlington, VT, USA
172 Department of Telecommunications and Control Engineering, University of Sao Paulo, Sao Paulo, Brazil
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
175 schema:name Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.430503.1 schema:alternateName University of Colorado Anschutz Medical Campus
178 schema:name Department of Bioengineering, University of Colorado Denver, 80045, Aurora, CO, USA
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.59062.38 schema:alternateName University of Vermont
181 schema:name Department of Medicine, Vermont Lung Center, University of Vermont College of Medicine, 149 Beaumont Ave, HSRF 228, 05405, Burlington, VT, USA
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...