Design Method Using Statistical Models for Miniature Left Ventricular Assist Device Hydraulics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

P. Alex Smith, Yaxin Wang, Shelby A. Bieritz, Luiz C. Sampaio, William E. Cohn, Ralph W. Metcalfe, O. H. Frazier

ABSTRACT

Left ventricular assist devices (LVADs) are increasingly used to treat heart failure patients. These devices' impeller blades and diffuser vanes must be designed for hydraulic performance and hemocompatibility. The traditional design method, applying mean-line theory, is not applicable to the design of small-scale pumps such as miniature LVADs. Furthermore, iterative experimental testing to determine how each geometric variable affects hydraulic performance is time and labor intensive. In this study, we tested a design method wherein empirical hydraulic results are used to establish a statistical model to predict pump hydraulic performance. This method was used to design an intra-atrial blood pump. Five geometric variables were chosen, and each was assigned two values to define the variable space. The experimental results were then analyzed with both correlation analysis and linear regression modeling. To validate the linear regression models, 2 test pumps were designed: mean value of each geometric variable within the boundaries, and random value of each geometric variable within the boundaries. The statistical model accurately predicted the hydraulic performance of both pump designs within the boundary space. This method could be expanded to include more geometric variables and broader boundary conditions, thus accelerating the design process for miniature LVADs. More... »

PAGES

126-137

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-018-02140-w

DOI

http://dx.doi.org/10.1007/s10439-018-02140-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107295747

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30267173


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart-Assist Devices", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Cardiovascular Surgical Research Laboratory, Texas Heart Institute, 6770 Bertner Ave, 77030, Houston, TX, USA", 
            "Department of Mechanical Engineering, University of Houston, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "P. Alex", 
        "id": "sg:person.011757626761.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757626761.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416986.4", 
          "name": [
            "Cardiovascular Surgical Research Laboratory, Texas Heart Institute, 6770 Bertner Ave, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yaxin", 
        "id": "sg:person.011162246361.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011162246361.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Cardiovascular Surgical Research Laboratory, Texas Heart Institute, 6770 Bertner Ave, 77030, Houston, TX, USA", 
            "Department of Bioengineering, Rice University, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bieritz", 
        "givenName": "Shelby A.", 
        "id": "sg:person.014650663264.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014650663264.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416986.4", 
          "name": [
            "Cardiovascular Surgical Research Laboratory, Texas Heart Institute, 6770 Bertner Ave, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sampaio", 
        "givenName": "Luiz C.", 
        "id": "sg:person.011050574035.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011050574035.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johnson & Johnson (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417429.d", 
          "name": [
            "Cardiovascular Surgical Research Laboratory, Texas Heart Institute, 6770 Bertner Ave, 77030, Houston, TX, USA", 
            "Center for Device Innovation, Johnson & Johnson, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cohn", 
        "givenName": "William E.", 
        "id": "sg:person.01133047041.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133047041.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "Department of Mechanical Engineering, University of Houston, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Metcalfe", 
        "givenName": "Ralph W.", 
        "id": "sg:person.0630431764.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630431764.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416986.4", 
          "name": [
            "Cardiovascular Surgical Research Laboratory, Texas Heart Institute, 6770 Bertner Ave, 77030, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frazier", 
        "givenName": "O. H.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.14503/thij-14-4143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001303933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1525-1594.1995.tb02396.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008387130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000346865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008688507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2011.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017377489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccl.2011.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020176090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1525-1594.2012.01456.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022743174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002480-200303000-00016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030358337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00002480-200303000-00016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030358337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037084752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037084752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mat.0b013e31828a6e74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047001111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mat.0b013e31828a6e74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047001111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semtcvs.2008.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047539861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0029-1240687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057206965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079401866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079401866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079401866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13239-017-0331-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091902293", 
          "https://doi.org/10.1007/s13239-017-0331-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-810491-0.00010-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091905332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471458503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471458503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0391398817752291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100986725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0391398817752291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100986725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2018.8513133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107905253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b15894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109727809"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Left ventricular assist devices (LVADs) are increasingly used to treat heart failure patients. These devices' impeller blades and diffuser vanes must be designed for hydraulic performance and hemocompatibility. The traditional design method, applying mean-line theory, is not applicable to the design of small-scale pumps such as miniature LVADs. Furthermore, iterative experimental testing to determine how each geometric variable affects hydraulic performance is time and labor intensive. In this study, we tested a design method wherein empirical hydraulic results are used to establish a statistical model to predict pump hydraulic performance. This method was used to design an intra-atrial blood pump. Five geometric variables were chosen, and each was assigned two values to define the variable space. The experimental results were then analyzed with both correlation analysis and linear regression modeling. To validate the linear regression models, 2 test pumps were designed: mean value of each geometric variable within the boundaries, and random value of each geometric variable within the boundaries. The statistical model accurately predicted the hydraulic performance of both pump designs within the boundary space. This method could be expanded to include more geometric variables and broader boundary conditions, thus accelerating the design process for miniature LVADs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-018-02140-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Design Method Using Statistical Models for Miniature Left Ventricular Assist Device Hydraulics", 
    "pagination": "126-137", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-018-02140-w"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "128cc746cb45b4138fc74533e4c17fc3fd6713c4f7d1bb0b0615338c2b65e1d3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107295747"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30267173"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-018-02140-w", 
      "https://app.dimensions.ai/details/publication/pub.1107295747"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56167_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10439-018-02140-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-018-02140-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-018-02140-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-018-02140-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-018-02140-w'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      51 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-018-02140-w schema:about N291cffb801bd4b7aba2d3303c5ad674a
2 N90069408715d46b4a31071056318ceb5
3 Nd14c21a5e29c452a8cc07adffd3d2dbb
4 Neca0f82547214c3097f22a5b48b64dc4
5 anzsrc-for:11
6 anzsrc-for:1102
7 schema:author N99360362cee04ababcbf051abeb2fd9c
8 schema:citation sg:pub.10.1007/s13239-017-0331-0
9 https://doi.org/10.1002/0471458503
10 https://doi.org/10.1016/b978-0-12-810491-0.00010-2
11 https://doi.org/10.1016/j.ccl.2011.08.013
12 https://doi.org/10.1016/j.medengphy.2011.04.010
13 https://doi.org/10.1053/j.semtcvs.2008.08.002
14 https://doi.org/10.1055/s-0029-1240687
15 https://doi.org/10.1097/00002480-200303000-00016
16 https://doi.org/10.1097/mat.0b013e31828a6e74
17 https://doi.org/10.1109/embc.2018.8513133
18 https://doi.org/10.1111/j.1525-1594.1995.tb02396.x
19 https://doi.org/10.1111/j.1525-1594.2012.01456.x
20 https://doi.org/10.1159/000346865
21 https://doi.org/10.1161/cir.0000000000000350
22 https://doi.org/10.1161/cir.0000000000000485
23 https://doi.org/10.1177/0391398817752291
24 https://doi.org/10.1201/b15894
25 https://doi.org/10.14503/thij-14-4143
26 schema:datePublished 2019-01
27 schema:datePublishedReg 2019-01-01
28 schema:description Left ventricular assist devices (LVADs) are increasingly used to treat heart failure patients. These devices' impeller blades and diffuser vanes must be designed for hydraulic performance and hemocompatibility. The traditional design method, applying mean-line theory, is not applicable to the design of small-scale pumps such as miniature LVADs. Furthermore, iterative experimental testing to determine how each geometric variable affects hydraulic performance is time and labor intensive. In this study, we tested a design method wherein empirical hydraulic results are used to establish a statistical model to predict pump hydraulic performance. This method was used to design an intra-atrial blood pump. Five geometric variables were chosen, and each was assigned two values to define the variable space. The experimental results were then analyzed with both correlation analysis and linear regression modeling. To validate the linear regression models, 2 test pumps were designed: mean value of each geometric variable within the boundaries, and random value of each geometric variable within the boundaries. The statistical model accurately predicted the hydraulic performance of both pump designs within the boundary space. This method could be expanded to include more geometric variables and broader boundary conditions, thus accelerating the design process for miniature LVADs.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N2ebffabfc0904cf6b53b86b57c2d2c37
33 N80017821b440410193ba0900d38756d2
34 sg:journal.1087247
35 schema:name Design Method Using Statistical Models for Miniature Left Ventricular Assist Device Hydraulics
36 schema:pagination 126-137
37 schema:productId N19f2d3eb79f341c78fff7a1d5bf8e612
38 N26b88e325bc343b0aadb7b50f21eeb28
39 N2c3d3270572e423492ac484e0e7b194d
40 N31b8bfecd13f4b99b48e75931b311cad
41 Nafc028374b34400698333c319a811416
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107295747
43 https://doi.org/10.1007/s10439-018-02140-w
44 schema:sdDatePublished 2019-04-15T09:15
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N59b18e9f33ea4dad8879a593b7a6f707
47 schema:url https://link.springer.com/10.1007%2Fs10439-018-02140-w
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N19f2d3eb79f341c78fff7a1d5bf8e612 schema:name nlm_unique_id
52 schema:value 0361512
53 rdf:type schema:PropertyValue
54 N1e3bb84fdc5e48f8b05dcbdc79d18b3c rdf:first sg:person.014650663264.36
55 rdf:rest N917a588166ff4cae888d9c4624e84b81
56 N25aca18d9f974ba5b9642b9f63aa7091 rdf:first sg:person.011162246361.19
57 rdf:rest N1e3bb84fdc5e48f8b05dcbdc79d18b3c
58 N26b88e325bc343b0aadb7b50f21eeb28 schema:name readcube_id
59 schema:value 128cc746cb45b4138fc74533e4c17fc3fd6713c4f7d1bb0b0615338c2b65e1d3
60 rdf:type schema:PropertyValue
61 N291cffb801bd4b7aba2d3303c5ad674a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Heart-Assist Devices
63 rdf:type schema:DefinedTerm
64 N2c3d3270572e423492ac484e0e7b194d schema:name doi
65 schema:value 10.1007/s10439-018-02140-w
66 rdf:type schema:PropertyValue
67 N2ebffabfc0904cf6b53b86b57c2d2c37 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N31b8bfecd13f4b99b48e75931b311cad schema:name pubmed_id
70 schema:value 30267173
71 rdf:type schema:PropertyValue
72 N43e44fa2c4ad41268cc14fdcf45ac755 rdf:first N678f08d37a684efa8200af40abf05fdc
73 rdf:rest rdf:nil
74 N59b18e9f33ea4dad8879a593b7a6f707 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N678f08d37a684efa8200af40abf05fdc schema:affiliation https://www.grid.ac/institutes/grid.416986.4
77 schema:familyName Frazier
78 schema:givenName O. H.
79 rdf:type schema:Person
80 N80017821b440410193ba0900d38756d2 schema:volumeNumber 47
81 rdf:type schema:PublicationVolume
82 N83824a4978184d72809fb262df4ff56b rdf:first sg:person.01133047041.52
83 rdf:rest Nae6c4a0a419f40bf8d6a55d612f8950b
84 N90069408715d46b4a31071056318ceb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Humans
86 rdf:type schema:DefinedTerm
87 N917a588166ff4cae888d9c4624e84b81 rdf:first sg:person.011050574035.93
88 rdf:rest N83824a4978184d72809fb262df4ff56b
89 N99360362cee04ababcbf051abeb2fd9c rdf:first sg:person.011757626761.06
90 rdf:rest N25aca18d9f974ba5b9642b9f63aa7091
91 Nae6c4a0a419f40bf8d6a55d612f8950b rdf:first sg:person.0630431764.34
92 rdf:rest N43e44fa2c4ad41268cc14fdcf45ac755
93 Nafc028374b34400698333c319a811416 schema:name dimensions_id
94 schema:value pub.1107295747
95 rdf:type schema:PropertyValue
96 Nd14c21a5e29c452a8cc07adffd3d2dbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Equipment Design
98 rdf:type schema:DefinedTerm
99 Neca0f82547214c3097f22a5b48b64dc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Models, Cardiovascular
101 rdf:type schema:DefinedTerm
102 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
103 schema:name Medical and Health Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
106 schema:name Cardiorespiratory Medicine and Haematology
107 rdf:type schema:DefinedTerm
108 sg:journal.1087247 schema:issn 0145-3068
109 1573-9686
110 schema:name Annals of Biomedical Engineering
111 rdf:type schema:Periodical
112 sg:person.011050574035.93 schema:affiliation https://www.grid.ac/institutes/grid.416986.4
113 schema:familyName Sampaio
114 schema:givenName Luiz C.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011050574035.93
116 rdf:type schema:Person
117 sg:person.011162246361.19 schema:affiliation https://www.grid.ac/institutes/grid.416986.4
118 schema:familyName Wang
119 schema:givenName Yaxin
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011162246361.19
121 rdf:type schema:Person
122 sg:person.01133047041.52 schema:affiliation https://www.grid.ac/institutes/grid.417429.d
123 schema:familyName Cohn
124 schema:givenName William E.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133047041.52
126 rdf:type schema:Person
127 sg:person.011757626761.06 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
128 schema:familyName Smith
129 schema:givenName P. Alex
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757626761.06
131 rdf:type schema:Person
132 sg:person.014650663264.36 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
133 schema:familyName Bieritz
134 schema:givenName Shelby A.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014650663264.36
136 rdf:type schema:Person
137 sg:person.0630431764.34 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
138 schema:familyName Metcalfe
139 schema:givenName Ralph W.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630431764.34
141 rdf:type schema:Person
142 sg:pub.10.1007/s13239-017-0331-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091902293
143 https://doi.org/10.1007/s13239-017-0331-0
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/0471458503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661084
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/b978-0-12-810491-0.00010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091905332
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ccl.2011.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020176090
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.medengphy.2011.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017377489
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1053/j.semtcvs.2008.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047539861
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1055/s-0029-1240687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057206965
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1097/00002480-200303000-00016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030358337
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1097/mat.0b013e31828a6e74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047001111
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/embc.2018.8513133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107905253
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1111/j.1525-1594.1995.tb02396.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008387130
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1111/j.1525-1594.2012.01456.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022743174
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1159/000346865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008688507
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1161/cir.0000000000000350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037084752
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1161/cir.0000000000000485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079401866
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1177/0391398817752291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100986725
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1201/b15894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109727809
176 rdf:type schema:CreativeWork
177 https://doi.org/10.14503/thij-14-4143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001303933
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.21940.3e schema:alternateName Rice University
180 schema:name Cardiovascular Surgical Research Laboratory, Texas Heart Institute, 6770 Bertner Ave, 77030, Houston, TX, USA
181 Department of Bioengineering, Rice University, Houston, TX, USA
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
184 schema:name Cardiovascular Surgical Research Laboratory, Texas Heart Institute, 6770 Bertner Ave, 77030, Houston, TX, USA
185 Department of Mechanical Engineering, University of Houston, Houston, TX, USA
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.416986.4 schema:alternateName Texas Medical Center
188 schema:name Cardiovascular Surgical Research Laboratory, Texas Heart Institute, 6770 Bertner Ave, 77030, Houston, TX, USA
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.417429.d schema:alternateName Johnson & Johnson (United States)
191 schema:name Cardiovascular Surgical Research Laboratory, Texas Heart Institute, 6770 Bertner Ave, 77030, Houston, TX, USA
192 Center for Device Innovation, Johnson & Johnson, Houston, TX, USA
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...