Combined Computational and Experimental Approach to Improve the Assessment of Mitral Regurgitation by Echocardiography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

Simon J. Sonntag, Wei Li, Michael Becker, Wiebke Kaestner, Martin R. Büsen, Nikolaus Marx, Dorit Merhof, Ulrich Steinseifer

ABSTRACT

Mitral regurgitation (MR) is one of the most frequent valvular heart diseases. To assess MR severity, color Doppler imaging (CDI) is the clinical standard. However, inadequate reliability, poor reproducibility and heavy user-dependence are known limitations. A novel approach combining computational and experimental methods is currently under development aiming to improve the quantification. A flow chamber for a circulatory flow loop was developed. Three different orifices were used to mimic variations of MR. The flow field was recorded simultaneously by a 2D Doppler ultrasound transducer and Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) simulations were conducted using the same geometry and boundary conditions. The resulting computed velocity field was used to simulate synthetic Doppler signals. Comparison between PIV and CFD shows a high level of agreement. The simulated CDI exhibits the same characteristics as the recorded color Doppler images. The feasibility of the proposed combination of experimental and computational methods for the investigation of MR is shown and the numerical methods are successfully validated against the experiments. Furthermore, it is discussed how the approach can be used in the long run as a platform to improve the assessment of MR quantification. More... »

PAGES

971-985

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-013-0968-2

DOI

http://dx.doi.org/10.1007/s10439-013-0968-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049585181

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24398572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Echocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitral Valve Insufficiency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rheology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography, Doppler", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sonntag", 
        "givenName": "Simon J.", 
        "id": "sg:person.0657106504.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657106504.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Institute of Imaging & Computer Vision, RWTH Aachen University, Sommerfeldstra\u00dfe 24, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wei", 
        "id": "sg:person.0725221704.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725221704.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4tsklinikum Aachen", 
          "id": "https://www.grid.ac/institutes/grid.412301.5", 
          "name": [
            "Department for Cardiology, Pneumology, Angiology and Internistic Intensive-Care Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becker", 
        "givenName": "Michael", 
        "id": "sg:person.0737333776.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737333776.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4tsklinikum Aachen", 
          "id": "https://www.grid.ac/institutes/grid.412301.5", 
          "name": [
            "Department for Cardiology, Pneumology, Angiology and Internistic Intensive-Care Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaestner", 
        "givenName": "Wiebke", 
        "id": "sg:person.01041450304.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041450304.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00fcsen", 
        "givenName": "Martin R.", 
        "id": "sg:person.01107563504.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107563504.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4tsklinikum Aachen", 
          "id": "https://www.grid.ac/institutes/grid.412301.5", 
          "name": [
            "Department for Cardiology, Pneumology, Angiology and Internistic Intensive-Care Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marx", 
        "givenName": "Nikolaus", 
        "id": "sg:person.01333650633.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333650633.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Institute of Imaging & Computer Vision, RWTH Aachen University, Sommerfeldstra\u00dfe 24, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merhof", 
        "givenName": "Dorit", 
        "id": "sg:person.014717025753.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717025753.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steinseifer", 
        "givenName": "Ulrich", 
        "id": "sg:person.0611041046.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611041046.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0301-5629(92)90129-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000006134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003706902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1620170207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004919820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13239-011-0038-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005409968", 
          "https://doi.org/10.1007/s13239-011-0038-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2011.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009022082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(89)90363-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012255488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2004.11.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012777344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(51)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018113356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2010.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018507733", 
          "https://doi.org/10.1038/nrcardio.2010.202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2012.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019366545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crme.2007.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022390711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0898-1221(03)90019-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023072388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mhj.2002.123139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025102358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-0233/12/11/320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027169859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.112.120519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028603006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.112.120519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028603006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-007-0319-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030325172", 
          "https://doi.org/10.1007/s00348-007-0319-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39903-2_48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033701211", 
          "https://doi.org/10.1007/978-3-540-39903-2_48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39903-2_48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033701211", 
          "https://doi.org/10.1007/978-3-540-39903-2_48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ejechocard/jeq031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041818312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ejechocard/jeq031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041818312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.23.010191.001401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042665937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.535490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046291564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00059-009-3284-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047141783", 
          "https://doi.org/10.1007/s00059-009-3284-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047474006", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047474006", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-fluid-120710-101204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051268499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1052484604", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052484604", 
          "https://doi.org/10.1007/978-3-642-56026-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052484604", 
          "https://doi.org/10.1007/978-3-642-56026-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-5629(90)90026-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053220450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.857955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.858280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/58.139123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061190352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tuffc.2009.1071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061809563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063451320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511840531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098697945"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "Mitral regurgitation (MR) is one of the most frequent valvular heart diseases. To assess MR severity, color Doppler imaging (CDI) is the clinical standard. However, inadequate reliability, poor reproducibility and heavy user-dependence are known limitations. A novel approach combining computational and experimental methods is currently under development aiming to improve the quantification. A flow chamber for a circulatory flow loop was developed. Three different orifices were used to mimic variations of MR. The flow field was recorded simultaneously by a 2D Doppler ultrasound transducer and Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) simulations were conducted using the same geometry and boundary conditions. The resulting computed velocity field was used to simulate synthetic Doppler signals. Comparison between PIV and CFD shows a high level of agreement. The simulated CDI exhibits the same characteristics as the recorded color Doppler images. The feasibility of the proposed combination of experimental and computational methods for the investigation of MR is shown and the numerical methods are successfully validated against the experiments. Furthermore, it is discussed how the approach can be used in the long run as a platform to improve the assessment of MR quantification. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-013-0968-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Combined Computational and Experimental Approach to Improve the Assessment of Mitral Regurgitation by Echocardiography", 
    "pagination": "971-985", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec3607a2bdb9150b9fb5bc310e14d9437289a9e8f2a9fdfb3cefa84677a81345"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24398572"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-013-0968-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049585181"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-013-0968-2", 
      "https://app.dimensions.ai/details/publication/pub.1049585181"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10439-013-0968-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-013-0968-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-013-0968-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-013-0968-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-013-0968-2'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      21 PREDICATES      67 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-013-0968-2 schema:about N0f6b3e40642c48e2a11a3b44f8a15fd8
2 N33ceaf59717246d1a41b28ea8292e9ff
3 N41ea2b5c20b344acb3f7496218c4d5aa
4 Nd484979a925b4238942b6482322b45bd
5 Nd778565f07b743d89f1f72594c8a4d53
6 anzsrc-for:09
7 anzsrc-for:0915
8 schema:author N460b020e2bcf4a7e979ea3710a685b4c
9 schema:citation sg:pub.10.1007/978-3-540-39903-2_48
10 sg:pub.10.1007/978-3-642-56026-2
11 sg:pub.10.1007/s00059-009-3284-8
12 sg:pub.10.1007/s00348-007-0319-x
13 sg:pub.10.1007/s13239-011-0038-6
14 sg:pub.10.1038/nrcardio.2010.202
15 https://app.dimensions.ai/details/publication/pub.1047474006
16 https://app.dimensions.ai/details/publication/pub.1052484604
17 https://doi.org/10.1002/nme.1620170207
18 https://doi.org/10.1016/0002-8703(51)90002-6
19 https://doi.org/10.1016/0301-5629(90)90026-9
20 https://doi.org/10.1016/0301-5629(92)90129-x
21 https://doi.org/10.1016/0735-1097(89)90363-x
22 https://doi.org/10.1016/j.crme.2007.08.004
23 https://doi.org/10.1016/j.echo.2011.11.010
24 https://doi.org/10.1016/j.jacc.2004.11.036
25 https://doi.org/10.1016/j.jcmg.2012.03.008
26 https://doi.org/10.1016/j.jcp.2003.09.027
27 https://doi.org/10.1016/s0898-1221(03)90019-8
28 https://doi.org/10.1017/cbo9780511840531
29 https://doi.org/10.1063/1.857955
30 https://doi.org/10.1063/1.858280
31 https://doi.org/10.1067/mhj.2002.123139
32 https://doi.org/10.1088/0957-0233/12/11/320
33 https://doi.org/10.1093/ejechocard/jeq031
34 https://doi.org/10.1109/58.139123
35 https://doi.org/10.1109/tuffc.2009.1071
36 https://doi.org/10.1117/12.535490
37 https://doi.org/10.1137/1.9781611970876
38 https://doi.org/10.1146/annurev-fluid-120710-101204
39 https://doi.org/10.1146/annurev.fl.23.010191.001401
40 https://doi.org/10.1161/circulationaha.112.120519
41 https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
42 schema:datePublished 2014-05
43 schema:datePublishedReg 2014-05-01
44 schema:description Mitral regurgitation (MR) is one of the most frequent valvular heart diseases. To assess MR severity, color Doppler imaging (CDI) is the clinical standard. However, inadequate reliability, poor reproducibility and heavy user-dependence are known limitations. A novel approach combining computational and experimental methods is currently under development aiming to improve the quantification. A flow chamber for a circulatory flow loop was developed. Three different orifices were used to mimic variations of MR. The flow field was recorded simultaneously by a 2D Doppler ultrasound transducer and Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) simulations were conducted using the same geometry and boundary conditions. The resulting computed velocity field was used to simulate synthetic Doppler signals. Comparison between PIV and CFD shows a high level of agreement. The simulated CDI exhibits the same characteristics as the recorded color Doppler images. The feasibility of the proposed combination of experimental and computational methods for the investigation of MR is shown and the numerical methods are successfully validated against the experiments. Furthermore, it is discussed how the approach can be used in the long run as a platform to improve the assessment of MR quantification.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N4a8452acd1f7453a83f3a93030bfa9e5
49 N92be9af266a3447fa515e8de0b51fdf1
50 sg:journal.1087247
51 schema:name Combined Computational and Experimental Approach to Improve the Assessment of Mitral Regurgitation by Echocardiography
52 schema:pagination 971-985
53 schema:productId N4b21545a899045f59df8ce0b8096d3e4
54 N544b6c9c254448d0bbe62aaabd432568
55 N8839f8479d5d4a63851ce24cf54a1f1c
56 N8d12cef93f4348769caf7e539447c563
57 Ne7268b4693b849608da7be2595faf924
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049585181
59 https://doi.org/10.1007/s10439-013-0968-2
60 schema:sdDatePublished 2019-04-10T21:38
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N663e7718b0f0454ca780bcfb6eecfe1b
63 schema:url http://link.springer.com/10.1007%2Fs10439-013-0968-2
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0f6b3e40642c48e2a11a3b44f8a15fd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Echocardiography
69 rdf:type schema:DefinedTerm
70 N14406aafded3481da9d53577457c1da6 rdf:first sg:person.01107563504.42
71 rdf:rest Nca1ae6c54682474e8a671219ccabc769
72 N33ceaf59717246d1a41b28ea8292e9ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Hydrodynamics
74 rdf:type schema:DefinedTerm
75 N41ea2b5c20b344acb3f7496218c4d5aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Ultrasonography, Doppler
77 rdf:type schema:DefinedTerm
78 N460b020e2bcf4a7e979ea3710a685b4c rdf:first sg:person.0657106504.56
79 rdf:rest N8046ef48f1f0415cb1e7f371c079062b
80 N4a8452acd1f7453a83f3a93030bfa9e5 schema:issueNumber 5
81 rdf:type schema:PublicationIssue
82 N4b21545a899045f59df8ce0b8096d3e4 schema:name readcube_id
83 schema:value ec3607a2bdb9150b9fb5bc310e14d9437289a9e8f2a9fdfb3cefa84677a81345
84 rdf:type schema:PropertyValue
85 N544b6c9c254448d0bbe62aaabd432568 schema:name nlm_unique_id
86 schema:value 0361512
87 rdf:type schema:PropertyValue
88 N5820d88c8bb0457380f5c080a07dcbbd rdf:first sg:person.01041450304.23
89 rdf:rest N14406aafded3481da9d53577457c1da6
90 N5d917b2196f145c39016a38ba867cd2c rdf:first sg:person.0611041046.18
91 rdf:rest rdf:nil
92 N663e7718b0f0454ca780bcfb6eecfe1b schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N8046ef48f1f0415cb1e7f371c079062b rdf:first sg:person.0725221704.64
95 rdf:rest Nda6c906d46034b82904994fe6baa86bf
96 N8839f8479d5d4a63851ce24cf54a1f1c schema:name dimensions_id
97 schema:value pub.1049585181
98 rdf:type schema:PropertyValue
99 N8d12cef93f4348769caf7e539447c563 schema:name pubmed_id
100 schema:value 24398572
101 rdf:type schema:PropertyValue
102 N92be9af266a3447fa515e8de0b51fdf1 schema:volumeNumber 42
103 rdf:type schema:PublicationVolume
104 N92fb7fa0fbb049d0a9de7104d7ab5dd4 rdf:first sg:person.014717025753.18
105 rdf:rest N5d917b2196f145c39016a38ba867cd2c
106 Nca1ae6c54682474e8a671219ccabc769 rdf:first sg:person.01333650633.03
107 rdf:rest N92fb7fa0fbb049d0a9de7104d7ab5dd4
108 Nd484979a925b4238942b6482322b45bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Rheology
110 rdf:type schema:DefinedTerm
111 Nd778565f07b743d89f1f72594c8a4d53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Mitral Valve Insufficiency
113 rdf:type schema:DefinedTerm
114 Nda6c906d46034b82904994fe6baa86bf rdf:first sg:person.0737333776.63
115 rdf:rest N5820d88c8bb0457380f5c080a07dcbbd
116 Ne7268b4693b849608da7be2595faf924 schema:name doi
117 schema:value 10.1007/s10439-013-0968-2
118 rdf:type schema:PropertyValue
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
123 schema:name Interdisciplinary Engineering
124 rdf:type schema:DefinedTerm
125 sg:journal.1087247 schema:issn 0145-3068
126 1573-9686
127 schema:name Annals of Biomedical Engineering
128 rdf:type schema:Periodical
129 sg:person.01041450304.23 schema:affiliation https://www.grid.ac/institutes/grid.412301.5
130 schema:familyName Kaestner
131 schema:givenName Wiebke
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041450304.23
133 rdf:type schema:Person
134 sg:person.01107563504.42 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
135 schema:familyName Büsen
136 schema:givenName Martin R.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107563504.42
138 rdf:type schema:Person
139 sg:person.01333650633.03 schema:affiliation https://www.grid.ac/institutes/grid.412301.5
140 schema:familyName Marx
141 schema:givenName Nikolaus
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333650633.03
143 rdf:type schema:Person
144 sg:person.014717025753.18 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
145 schema:familyName Merhof
146 schema:givenName Dorit
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717025753.18
148 rdf:type schema:Person
149 sg:person.0611041046.18 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
150 schema:familyName Steinseifer
151 schema:givenName Ulrich
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611041046.18
153 rdf:type schema:Person
154 sg:person.0657106504.56 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
155 schema:familyName Sonntag
156 schema:givenName Simon J.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657106504.56
158 rdf:type schema:Person
159 sg:person.0725221704.64 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
160 schema:familyName Li
161 schema:givenName Wei
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725221704.64
163 rdf:type schema:Person
164 sg:person.0737333776.63 schema:affiliation https://www.grid.ac/institutes/grid.412301.5
165 schema:familyName Becker
166 schema:givenName Michael
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737333776.63
168 rdf:type schema:Person
169 sg:pub.10.1007/978-3-540-39903-2_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033701211
170 https://doi.org/10.1007/978-3-540-39903-2_48
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/978-3-642-56026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052484604
173 https://doi.org/10.1007/978-3-642-56026-2
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s00059-009-3284-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047141783
176 https://doi.org/10.1007/s00059-009-3284-8
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00348-007-0319-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030325172
179 https://doi.org/10.1007/s00348-007-0319-x
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s13239-011-0038-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005409968
182 https://doi.org/10.1007/s13239-011-0038-6
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nrcardio.2010.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018507733
185 https://doi.org/10.1038/nrcardio.2010.202
186 rdf:type schema:CreativeWork
187 https://app.dimensions.ai/details/publication/pub.1047474006 schema:CreativeWork
188 https://app.dimensions.ai/details/publication/pub.1052484604 schema:CreativeWork
189 https://doi.org/10.1002/nme.1620170207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004919820
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/0002-8703(51)90002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018113356
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/0301-5629(90)90026-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053220450
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0301-5629(92)90129-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000006134
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/0735-1097(89)90363-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012255488
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.crme.2007.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022390711
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.echo.2011.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009022082
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.jacc.2004.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012777344
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.jcmg.2012.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019366545
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.jcp.2003.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003706902
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0898-1221(03)90019-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023072388
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1017/cbo9780511840531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098697945
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1063/1.857955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111160
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1063/1.858280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111485
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1067/mhj.2002.123139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025102358
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1088/0957-0233/12/11/320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027169859
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/ejechocard/jeq031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041818312
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/58.139123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061190352
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tuffc.2009.1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061809563
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1117/12.535490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046291564
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1137/1.9781611970876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556257
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1146/annurev-fluid-120710-101204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051268499
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1146/annurev.fl.23.010191.001401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042665937
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1161/circulationaha.112.120519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028603006
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063451320
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.1957.a schema:alternateName RWTH Aachen University
240 schema:name Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, 52074, Aachen, Germany
241 Institute of Imaging & Computer Vision, RWTH Aachen University, Sommerfeldstraße 24, 52074, Aachen, Germany
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.412301.5 schema:alternateName Universitätsklinikum Aachen
244 schema:name Department for Cardiology, Pneumology, Angiology and Internistic Intensive-Care Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...