Combined Computational and Experimental Approach to Improve the Assessment of Mitral Regurgitation by Echocardiography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

Simon J. Sonntag, Wei Li, Michael Becker, Wiebke Kaestner, Martin R. Büsen, Nikolaus Marx, Dorit Merhof, Ulrich Steinseifer

ABSTRACT

Mitral regurgitation (MR) is one of the most frequent valvular heart diseases. To assess MR severity, color Doppler imaging (CDI) is the clinical standard. However, inadequate reliability, poor reproducibility and heavy user-dependence are known limitations. A novel approach combining computational and experimental methods is currently under development aiming to improve the quantification. A flow chamber for a circulatory flow loop was developed. Three different orifices were used to mimic variations of MR. The flow field was recorded simultaneously by a 2D Doppler ultrasound transducer and Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) simulations were conducted using the same geometry and boundary conditions. The resulting computed velocity field was used to simulate synthetic Doppler signals. Comparison between PIV and CFD shows a high level of agreement. The simulated CDI exhibits the same characteristics as the recorded color Doppler images. The feasibility of the proposed combination of experimental and computational methods for the investigation of MR is shown and the numerical methods are successfully validated against the experiments. Furthermore, it is discussed how the approach can be used in the long run as a platform to improve the assessment of MR quantification. More... »

PAGES

971-985

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-013-0968-2

DOI

http://dx.doi.org/10.1007/s10439-013-0968-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049585181

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24398572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Echocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitral Valve Insufficiency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rheology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography, Doppler", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sonntag", 
        "givenName": "Simon J.", 
        "id": "sg:person.0657106504.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657106504.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Institute of Imaging & Computer Vision, RWTH Aachen University, Sommerfeldstra\u00dfe 24, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wei", 
        "id": "sg:person.0725221704.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725221704.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4tsklinikum Aachen", 
          "id": "https://www.grid.ac/institutes/grid.412301.5", 
          "name": [
            "Department for Cardiology, Pneumology, Angiology and Internistic Intensive-Care Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becker", 
        "givenName": "Michael", 
        "id": "sg:person.0737333776.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737333776.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4tsklinikum Aachen", 
          "id": "https://www.grid.ac/institutes/grid.412301.5", 
          "name": [
            "Department for Cardiology, Pneumology, Angiology and Internistic Intensive-Care Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaestner", 
        "givenName": "Wiebke", 
        "id": "sg:person.01041450304.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041450304.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00fcsen", 
        "givenName": "Martin R.", 
        "id": "sg:person.01107563504.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107563504.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4tsklinikum Aachen", 
          "id": "https://www.grid.ac/institutes/grid.412301.5", 
          "name": [
            "Department for Cardiology, Pneumology, Angiology and Internistic Intensive-Care Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marx", 
        "givenName": "Nikolaus", 
        "id": "sg:person.01333650633.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333650633.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Institute of Imaging & Computer Vision, RWTH Aachen University, Sommerfeldstra\u00dfe 24, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merhof", 
        "givenName": "Dorit", 
        "id": "sg:person.014717025753.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717025753.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steinseifer", 
        "givenName": "Ulrich", 
        "id": "sg:person.0611041046.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611041046.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0301-5629(92)90129-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000006134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003706902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1620170207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004919820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13239-011-0038-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005409968", 
          "https://doi.org/10.1007/s13239-011-0038-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2011.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009022082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(89)90363-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012255488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2004.11.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012777344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(51)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018113356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2010.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018507733", 
          "https://doi.org/10.1038/nrcardio.2010.202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2012.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019366545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crme.2007.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022390711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0898-1221(03)90019-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023072388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mhj.2002.123139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025102358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-0233/12/11/320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027169859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.112.120519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028603006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.112.120519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028603006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-007-0319-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030325172", 
          "https://doi.org/10.1007/s00348-007-0319-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39903-2_48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033701211", 
          "https://doi.org/10.1007/978-3-540-39903-2_48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39903-2_48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033701211", 
          "https://doi.org/10.1007/978-3-540-39903-2_48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ejechocard/jeq031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041818312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ejechocard/jeq031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041818312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.23.010191.001401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042665937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.535490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046291564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00059-009-3284-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047141783", 
          "https://doi.org/10.1007/s00059-009-3284-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047474006", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047474006", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-fluid-120710-101204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051268499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1052484604", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052484604", 
          "https://doi.org/10.1007/978-3-642-56026-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052484604", 
          "https://doi.org/10.1007/978-3-642-56026-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-5629(90)90026-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053220450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.857955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.858280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058111485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/58.139123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061190352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tuffc.2009.1071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061809563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063451320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511840531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098697945"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "Mitral regurgitation (MR) is one of the most frequent valvular heart diseases. To assess MR severity, color Doppler imaging (CDI) is the clinical standard. However, inadequate reliability, poor reproducibility and heavy user-dependence are known limitations. A novel approach combining computational and experimental methods is currently under development aiming to improve the quantification. A flow chamber for a circulatory flow loop was developed. Three different orifices were used to mimic variations of MR. The flow field was recorded simultaneously by a 2D Doppler ultrasound transducer and Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) simulations were conducted using the same geometry and boundary conditions. The resulting computed velocity field was used to simulate synthetic Doppler signals. Comparison between PIV and CFD shows a high level of agreement. The simulated CDI exhibits the same characteristics as the recorded color Doppler images. The feasibility of the proposed combination of experimental and computational methods for the investigation of MR is shown and the numerical methods are successfully validated against the experiments. Furthermore, it is discussed how the approach can be used in the long run as a platform to improve the assessment of MR quantification. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-013-0968-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Combined Computational and Experimental Approach to Improve the Assessment of Mitral Regurgitation by Echocardiography", 
    "pagination": "971-985", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec3607a2bdb9150b9fb5bc310e14d9437289a9e8f2a9fdfb3cefa84677a81345"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24398572"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-013-0968-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049585181"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-013-0968-2", 
      "https://app.dimensions.ai/details/publication/pub.1049585181"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10439-013-0968-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-013-0968-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-013-0968-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-013-0968-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-013-0968-2'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      21 PREDICATES      67 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-013-0968-2 schema:about N4979782285a9424f88912d0c3bdc4ffd
2 N6611bbf47eae408e9526c38c37806bcf
3 N88b7e79192b946bc915978797bbf5987
4 Nb2027e2b899346a9b8dfca5d214c243a
5 Ne42e85ec81054cf4af0788a0fb0128da
6 anzsrc-for:09
7 anzsrc-for:0915
8 schema:author N18705dc6c35d4ed8913f2479d5e58cf5
9 schema:citation sg:pub.10.1007/978-3-540-39903-2_48
10 sg:pub.10.1007/978-3-642-56026-2
11 sg:pub.10.1007/s00059-009-3284-8
12 sg:pub.10.1007/s00348-007-0319-x
13 sg:pub.10.1007/s13239-011-0038-6
14 sg:pub.10.1038/nrcardio.2010.202
15 https://app.dimensions.ai/details/publication/pub.1047474006
16 https://app.dimensions.ai/details/publication/pub.1052484604
17 https://doi.org/10.1002/nme.1620170207
18 https://doi.org/10.1016/0002-8703(51)90002-6
19 https://doi.org/10.1016/0301-5629(90)90026-9
20 https://doi.org/10.1016/0301-5629(92)90129-x
21 https://doi.org/10.1016/0735-1097(89)90363-x
22 https://doi.org/10.1016/j.crme.2007.08.004
23 https://doi.org/10.1016/j.echo.2011.11.010
24 https://doi.org/10.1016/j.jacc.2004.11.036
25 https://doi.org/10.1016/j.jcmg.2012.03.008
26 https://doi.org/10.1016/j.jcp.2003.09.027
27 https://doi.org/10.1016/s0898-1221(03)90019-8
28 https://doi.org/10.1017/cbo9780511840531
29 https://doi.org/10.1063/1.857955
30 https://doi.org/10.1063/1.858280
31 https://doi.org/10.1067/mhj.2002.123139
32 https://doi.org/10.1088/0957-0233/12/11/320
33 https://doi.org/10.1093/ejechocard/jeq031
34 https://doi.org/10.1109/58.139123
35 https://doi.org/10.1109/tuffc.2009.1071
36 https://doi.org/10.1117/12.535490
37 https://doi.org/10.1137/1.9781611970876
38 https://doi.org/10.1146/annurev-fluid-120710-101204
39 https://doi.org/10.1146/annurev.fl.23.010191.001401
40 https://doi.org/10.1161/circulationaha.112.120519
41 https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
42 schema:datePublished 2014-05
43 schema:datePublishedReg 2014-05-01
44 schema:description Mitral regurgitation (MR) is one of the most frequent valvular heart diseases. To assess MR severity, color Doppler imaging (CDI) is the clinical standard. However, inadequate reliability, poor reproducibility and heavy user-dependence are known limitations. A novel approach combining computational and experimental methods is currently under development aiming to improve the quantification. A flow chamber for a circulatory flow loop was developed. Three different orifices were used to mimic variations of MR. The flow field was recorded simultaneously by a 2D Doppler ultrasound transducer and Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) simulations were conducted using the same geometry and boundary conditions. The resulting computed velocity field was used to simulate synthetic Doppler signals. Comparison between PIV and CFD shows a high level of agreement. The simulated CDI exhibits the same characteristics as the recorded color Doppler images. The feasibility of the proposed combination of experimental and computational methods for the investigation of MR is shown and the numerical methods are successfully validated against the experiments. Furthermore, it is discussed how the approach can be used in the long run as a platform to improve the assessment of MR quantification.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N82a89f271cce46a3be04908a8d58505d
49 N94696b8113be40f88ce2a4e2d2fc6975
50 sg:journal.1087247
51 schema:name Combined Computational and Experimental Approach to Improve the Assessment of Mitral Regurgitation by Echocardiography
52 schema:pagination 971-985
53 schema:productId N09aaa39352fa4dad9291b8c1225e47ad
54 N329280a28cb24494bd52c4ae83217b91
55 N3b430319d5704f19b2cfd45d3a19b41e
56 Nc2970c55caa2487a9247c0ca929937ff
57 Nf9cd96a14503405a8b9f28cc260759ed
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049585181
59 https://doi.org/10.1007/s10439-013-0968-2
60 schema:sdDatePublished 2019-04-10T21:38
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nd248994516794ff692d549b7e3d2e83b
63 schema:url http://link.springer.com/10.1007%2Fs10439-013-0968-2
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N09aaa39352fa4dad9291b8c1225e47ad schema:name dimensions_id
68 schema:value pub.1049585181
69 rdf:type schema:PropertyValue
70 N18705dc6c35d4ed8913f2479d5e58cf5 rdf:first sg:person.0657106504.56
71 rdf:rest N3d8ce9e3b4884c8eaaea31f27fc88d32
72 N274cde9d44f549fe896fdba5bfb8fa4e rdf:first sg:person.01333650633.03
73 rdf:rest Ne4512961fb434ec999ade89aea8357f9
74 N329280a28cb24494bd52c4ae83217b91 schema:name nlm_unique_id
75 schema:value 0361512
76 rdf:type schema:PropertyValue
77 N3b430319d5704f19b2cfd45d3a19b41e schema:name pubmed_id
78 schema:value 24398572
79 rdf:type schema:PropertyValue
80 N3d8ce9e3b4884c8eaaea31f27fc88d32 rdf:first sg:person.0725221704.64
81 rdf:rest Nab15db2f759242afb2a0f9dc4e9ca4c6
82 N4979782285a9424f88912d0c3bdc4ffd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Mitral Valve Insufficiency
84 rdf:type schema:DefinedTerm
85 N60e5caea5efc4faf876211744bfc5c6a rdf:first sg:person.01107563504.42
86 rdf:rest N274cde9d44f549fe896fdba5bfb8fa4e
87 N6611bbf47eae408e9526c38c37806bcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Hydrodynamics
89 rdf:type schema:DefinedTerm
90 N82a89f271cce46a3be04908a8d58505d schema:volumeNumber 42
91 rdf:type schema:PublicationVolume
92 N88b7e79192b946bc915978797bbf5987 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Echocardiography
94 rdf:type schema:DefinedTerm
95 N94696b8113be40f88ce2a4e2d2fc6975 schema:issueNumber 5
96 rdf:type schema:PublicationIssue
97 Nab15db2f759242afb2a0f9dc4e9ca4c6 rdf:first sg:person.0737333776.63
98 rdf:rest Nd4844e60a78b4081b797c6ee6bf5cd57
99 Nb2027e2b899346a9b8dfca5d214c243a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Ultrasonography, Doppler
101 rdf:type schema:DefinedTerm
102 Nb977e692f08b48ba85608fe76a1eb3e0 rdf:first sg:person.0611041046.18
103 rdf:rest rdf:nil
104 Nc2970c55caa2487a9247c0ca929937ff schema:name doi
105 schema:value 10.1007/s10439-013-0968-2
106 rdf:type schema:PropertyValue
107 Nd248994516794ff692d549b7e3d2e83b schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Nd4844e60a78b4081b797c6ee6bf5cd57 rdf:first sg:person.01041450304.23
110 rdf:rest N60e5caea5efc4faf876211744bfc5c6a
111 Ne42e85ec81054cf4af0788a0fb0128da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Rheology
113 rdf:type schema:DefinedTerm
114 Ne4512961fb434ec999ade89aea8357f9 rdf:first sg:person.014717025753.18
115 rdf:rest Nb977e692f08b48ba85608fe76a1eb3e0
116 Nf9cd96a14503405a8b9f28cc260759ed schema:name readcube_id
117 schema:value ec3607a2bdb9150b9fb5bc310e14d9437289a9e8f2a9fdfb3cefa84677a81345
118 rdf:type schema:PropertyValue
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
123 schema:name Interdisciplinary Engineering
124 rdf:type schema:DefinedTerm
125 sg:journal.1087247 schema:issn 0145-3068
126 1573-9686
127 schema:name Annals of Biomedical Engineering
128 rdf:type schema:Periodical
129 sg:person.01041450304.23 schema:affiliation https://www.grid.ac/institutes/grid.412301.5
130 schema:familyName Kaestner
131 schema:givenName Wiebke
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041450304.23
133 rdf:type schema:Person
134 sg:person.01107563504.42 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
135 schema:familyName Büsen
136 schema:givenName Martin R.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107563504.42
138 rdf:type schema:Person
139 sg:person.01333650633.03 schema:affiliation https://www.grid.ac/institutes/grid.412301.5
140 schema:familyName Marx
141 schema:givenName Nikolaus
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333650633.03
143 rdf:type schema:Person
144 sg:person.014717025753.18 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
145 schema:familyName Merhof
146 schema:givenName Dorit
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014717025753.18
148 rdf:type schema:Person
149 sg:person.0611041046.18 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
150 schema:familyName Steinseifer
151 schema:givenName Ulrich
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611041046.18
153 rdf:type schema:Person
154 sg:person.0657106504.56 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
155 schema:familyName Sonntag
156 schema:givenName Simon J.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657106504.56
158 rdf:type schema:Person
159 sg:person.0725221704.64 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
160 schema:familyName Li
161 schema:givenName Wei
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725221704.64
163 rdf:type schema:Person
164 sg:person.0737333776.63 schema:affiliation https://www.grid.ac/institutes/grid.412301.5
165 schema:familyName Becker
166 schema:givenName Michael
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737333776.63
168 rdf:type schema:Person
169 sg:pub.10.1007/978-3-540-39903-2_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033701211
170 https://doi.org/10.1007/978-3-540-39903-2_48
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/978-3-642-56026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052484604
173 https://doi.org/10.1007/978-3-642-56026-2
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s00059-009-3284-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047141783
176 https://doi.org/10.1007/s00059-009-3284-8
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00348-007-0319-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030325172
179 https://doi.org/10.1007/s00348-007-0319-x
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s13239-011-0038-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005409968
182 https://doi.org/10.1007/s13239-011-0038-6
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nrcardio.2010.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018507733
185 https://doi.org/10.1038/nrcardio.2010.202
186 rdf:type schema:CreativeWork
187 https://app.dimensions.ai/details/publication/pub.1047474006 schema:CreativeWork
188 https://app.dimensions.ai/details/publication/pub.1052484604 schema:CreativeWork
189 https://doi.org/10.1002/nme.1620170207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004919820
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/0002-8703(51)90002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018113356
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/0301-5629(90)90026-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053220450
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0301-5629(92)90129-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000006134
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/0735-1097(89)90363-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012255488
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.crme.2007.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022390711
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.echo.2011.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009022082
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.jacc.2004.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012777344
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.jcmg.2012.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019366545
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.jcp.2003.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003706902
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0898-1221(03)90019-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023072388
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1017/cbo9780511840531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098697945
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1063/1.857955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111160
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1063/1.858280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058111485
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1067/mhj.2002.123139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025102358
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1088/0957-0233/12/11/320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027169859
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/ejechocard/jeq031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041818312
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/58.139123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061190352
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tuffc.2009.1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061809563
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1117/12.535490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046291564
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1137/1.9781611970876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556257
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1146/annurev-fluid-120710-101204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051268499
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1146/annurev.fl.23.010191.001401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042665937
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1161/circulationaha.112.120519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028603006
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063451320
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.1957.a schema:alternateName RWTH Aachen University
240 schema:name Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, 52074, Aachen, Germany
241 Institute of Imaging & Computer Vision, RWTH Aachen University, Sommerfeldstraße 24, 52074, Aachen, Germany
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.412301.5 schema:alternateName Universitätsklinikum Aachen
244 schema:name Department for Cardiology, Pneumology, Angiology and Internistic Intensive-Care Medicine, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...