Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-03

AUTHORS

Kibaek Lee, Junjun Zhu, Judy Shum, Yongjie Zhang, Satish C. Muluk, Ankur Chandra, Mark K. Eskandari, Ender A. Finol

ABSTRACT

An abdominal aortic aneurysm (AAA) carries one of the highest mortality rates among vascular diseases when it ruptures. To predict the role of surface curvature in rupture risk assessment, a discriminatory analysis of aneurysm geometry characterization was conducted. Data was obtained from 205 patient-specific computed tomography image sets corresponding to three AAA population subgroups: patients under surveillance, those that underwent elective repair of the aneurysm, and those with an emergent repair. Each AAA was reconstructed and their surface curvatures estimated using the biquintic Hermite finite element method. Local surface curvatures were processed into ten global curvature indices. Statistical analysis of the data revealed that the L2-norm of the Gaussian and Mean surface curvatures can be utilized as classifiers of the three AAA population subgroups. The application of statistical machine learning on the curvature features yielded 85.5% accuracy in classifying electively and emergent repaired AAAs, compared to a 68.9% accuracy obtained by using maximum aneurysm diameter alone. Such combination of non-invasive geometric quantification and statistical machine learning methods can be used in a clinical setting to assess the risk of rupture of aneurysms during regular patient follow-ups. More... »

PAGES

562-576

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-012-0691-4

DOI

http://dx.doi.org/10.1007/s10439-012-0691-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018683007

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23180028


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aortic Aneurysm, Abdominal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aortic Rupture", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Finite Element Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kibaek", 
        "id": "sg:person.0660627730.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660627730.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Junjun", 
        "id": "sg:person.011004600555.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011004600555.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shum", 
        "givenName": "Judy", 
        "id": "sg:person.0775056330.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775056330.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yongjie", 
        "id": "sg:person.07646135347.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07646135347.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Allegheny-Singer Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.280673.8", 
          "name": [
            "Division of Vascular Surgery, Allegheny-Singer Research Institute, West Penn Allegheny Health System, 14th Floor, South Tower, 320 East North Avenue, 15212, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muluk", 
        "givenName": "Satish C.", 
        "id": "sg:person.0764073425.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764073425.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Vascular Surgery, Rochester Institute of Technology, University of Rochester School of Medicine, and Dentistry, 601 Elmwood Avenue, Box 652, 14642, Rochester, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chandra", 
        "givenName": "Ankur", 
        "id": "sg:person.0774466300.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774466300.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, 676 North Saint Clair Street, Suite #650, 60611, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eskandari", 
        "givenName": "Mark K.", 
        "id": "sg:person.01246741357.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246741357.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at San Antonio", 
          "id": "https://www.grid.ac/institutes/grid.215352.2", 
          "name": [
            "Department of Biomedical Engineering, The University of Texas at San Antonio, One UTSA Circle, AET 1.360, 78249, San Antonio, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finol", 
        "givenName": "Ender A.", 
        "id": "sg:person.01046253173.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046253173.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0140-6736(98)10137-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010582412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-010-0175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016650194", 
          "https://doi.org/10.1007/s10439-010-0175-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-010-0175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016650194", 
          "https://doi.org/10.1007/s10439-010-0175-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejvs.2004.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016706988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa012573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa012573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa012573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1114/1.1306342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018897655", 
          "https://doi.org/10.1114/1.1306342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(02)11522-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019429590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1656274.1656278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028526411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02368182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029783791", 
          "https://doi.org/10.1007/bf02368182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02368182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029783791", 
          "https://doi.org/10.1007/bf02368182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1114/1.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031437224", 
          "https://doi.org/10.1114/1.202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(04)16979-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040093141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.5725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042198937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000133279.07468.9f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042383165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3284976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044922678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0003319706290741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045559008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0003319706290741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045559008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mva.2003.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049760097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mva.2003.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049760097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)66459-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049829297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.avsg.2007.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:abme.0000012746.31343.92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051822214", 
          "https://doi.org/10.1023/b:abme.0000012746.31343.92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0741-5214(91)90249-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053744995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.57680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2002.803108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1351807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062068373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3127256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062102280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3127256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062102280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2005.102.2.0355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071101450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2005.102.2.0355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071101450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2005.102.2.0355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071101450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.1991.260.4.h1365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078044150"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "An abdominal aortic aneurysm (AAA) carries one of the highest mortality rates among vascular diseases when it ruptures. To predict the role of surface curvature in rupture risk assessment, a discriminatory analysis of aneurysm geometry characterization was conducted. Data was obtained from 205 patient-specific computed tomography image sets corresponding to three AAA population subgroups: patients under surveillance, those that underwent elective repair of the aneurysm, and those with an emergent repair. Each AAA was reconstructed and their surface curvatures estimated using the biquintic Hermite finite element method. Local surface curvatures were processed into ten global curvature indices. Statistical analysis of the data revealed that the L2-norm of the Gaussian and Mean surface curvatures can be utilized as classifiers of the three AAA population subgroups. The application of statistical machine learning on the curvature features yielded 85.5% accuracy in classifying electively and emergent repaired AAAs, compared to a 68.9% accuracy obtained by using maximum aneurysm diameter alone. Such combination of non-invasive geometric quantification and statistical machine learning methods can be used in a clinical setting to assess the risk of rupture of aneurysms during regular patient follow-ups.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-012-0691-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2593674", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2610386", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2610466", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis", 
    "pagination": "562-576", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5904504f790a214e363e7e0ec5041d5f71f38d2ffbf000043da896628cdae4be"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23180028"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-012-0691-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018683007"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-012-0691-4", 
      "https://app.dimensions.ai/details/publication/pub.1018683007"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10439-012-0691-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0691-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0691-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0691-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0691-4'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      21 PREDICATES      66 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-012-0691-4 schema:about N018405c0a92a4607b03bc1c3b83fe2ea
2 N12f537adfc9843c786e7376cb75fc090
3 N19de72da88ae4736bd18f55d962eed90
4 N1a172798ccbb48bc96825f4ea9cbf19c
5 N1df9110b500b44058bace2d4910fd3d2
6 N76d2156226034c938ae05d4c202185b9
7 Nc3ed6897820e4843a8d70e0f20026fe3
8 Nc620f9218830467282fb951075654eb3
9 Nce08a467b61247508c5190b529bd9227
10 Ne039cecd600c4bb6b1063689e7f6115c
11 Nf8be4081e74d46a7904a1f8d66b58585
12 Nff24b7d5c4e843d1a02dc7960141efbc
13 anzsrc-for:08
14 anzsrc-for:0801
15 schema:author N939cb24fbe014b119c0cb0732f4b799e
16 schema:citation sg:pub.10.1007/bf02368182
17 sg:pub.10.1007/s10439-010-0175-3
18 sg:pub.10.1023/b:abme.0000012746.31343.92
19 sg:pub.10.1114/1.1306342
20 sg:pub.10.1114/1.202
21 https://doi.org/10.1002/bjs.5725
22 https://doi.org/10.1016/0741-5214(91)90249-t
23 https://doi.org/10.1016/j.avsg.2007.09.004
24 https://doi.org/10.1016/j.ejvs.2004.03.029
25 https://doi.org/10.1016/s0140-6736(02)11522-4
26 https://doi.org/10.1016/s0140-6736(04)16979-1
27 https://doi.org/10.1016/s0140-6736(05)66459-8
28 https://doi.org/10.1016/s0140-6736(98)10137-x
29 https://doi.org/10.1056/nejmoa012573
30 https://doi.org/10.1067/mva.2003.213
31 https://doi.org/10.1109/34.57680
32 https://doi.org/10.1109/tmi.2002.803108
33 https://doi.org/10.1115/1.1351807
34 https://doi.org/10.1115/1.3127256
35 https://doi.org/10.1118/1.3284976
36 https://doi.org/10.1145/1656274.1656278
37 https://doi.org/10.1152/ajpheart.1991.260.4.h1365
38 https://doi.org/10.1161/01.cir.0000133279.07468.9f
39 https://doi.org/10.1177/0003319706290741
40 https://doi.org/10.3171/jns.2005.102.2.0355
41 schema:datePublished 2013-03
42 schema:datePublishedReg 2013-03-01
43 schema:description An abdominal aortic aneurysm (AAA) carries one of the highest mortality rates among vascular diseases when it ruptures. To predict the role of surface curvature in rupture risk assessment, a discriminatory analysis of aneurysm geometry characterization was conducted. Data was obtained from 205 patient-specific computed tomography image sets corresponding to three AAA population subgroups: patients under surveillance, those that underwent elective repair of the aneurysm, and those with an emergent repair. Each AAA was reconstructed and their surface curvatures estimated using the biquintic Hermite finite element method. Local surface curvatures were processed into ten global curvature indices. Statistical analysis of the data revealed that the L2-norm of the Gaussian and Mean surface curvatures can be utilized as classifiers of the three AAA population subgroups. The application of statistical machine learning on the curvature features yielded 85.5% accuracy in classifying electively and emergent repaired AAAs, compared to a 68.9% accuracy obtained by using maximum aneurysm diameter alone. Such combination of non-invasive geometric quantification and statistical machine learning methods can be used in a clinical setting to assess the risk of rupture of aneurysms during regular patient follow-ups.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf Nab84ef49e4864347a762a4239fd900cd
48 Nd8b3cfeddee74bd0b3efdfa68b0112bc
49 sg:journal.1087247
50 schema:name Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis
51 schema:pagination 562-576
52 schema:productId N0bd5acfcb94a4516a001b0f7a883e5f2
53 N0d6db473d6ee46e5b06cf84d3a393a06
54 N3f7e8ae5c7af436d81fc3f1145333331
55 N5b300463d0a647bbbcc7679a14123064
56 N91181ab1f4f949b380da5a6bf00e0a01
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018683007
58 https://doi.org/10.1007/s10439-012-0691-4
59 schema:sdDatePublished 2019-04-10T15:01
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N994d866bf5fd4b1aa1e489b4527ef6b4
62 schema:url http://link.springer.com/10.1007%2Fs10439-012-0691-4
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N018405c0a92a4607b03bc1c3b83fe2ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Computer Simulation
68 rdf:type schema:DefinedTerm
69 N0bd5acfcb94a4516a001b0f7a883e5f2 schema:name readcube_id
70 schema:value 5904504f790a214e363e7e0ec5041d5f71f38d2ffbf000043da896628cdae4be
71 rdf:type schema:PropertyValue
72 N0d6db473d6ee46e5b06cf84d3a393a06 schema:name nlm_unique_id
73 schema:value 0361512
74 rdf:type schema:PropertyValue
75 N12f537adfc9843c786e7376cb75fc090 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Aortic Rupture
77 rdf:type schema:DefinedTerm
78 N19de72da88ae4736bd18f55d962eed90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Angiography
80 rdf:type schema:DefinedTerm
81 N1a172798ccbb48bc96825f4ea9cbf19c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Radiographic Image Interpretation, Computer-Assisted
83 rdf:type schema:DefinedTerm
84 N1df9110b500b44058bace2d4910fd3d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Humans
86 rdf:type schema:DefinedTerm
87 N1e3537d27a344ab894fc508b01ac23ea rdf:first sg:person.0775056330.89
88 rdf:rest N2ba53a65e94f41919f8ac1567fb72cb9
89 N2ba53a65e94f41919f8ac1567fb72cb9 rdf:first sg:person.07646135347.75
90 rdf:rest N3fa63a487dfe4607847b0a38a861352f
91 N3f7e8ae5c7af436d81fc3f1145333331 schema:name dimensions_id
92 schema:value pub.1018683007
93 rdf:type schema:PropertyValue
94 N3fa63a487dfe4607847b0a38a861352f rdf:first sg:person.0764073425.77
95 rdf:rest N920c4c8aca314c46ba7333e18e4d26ee
96 N5b300463d0a647bbbcc7679a14123064 schema:name pubmed_id
97 schema:value 23180028
98 rdf:type schema:PropertyValue
99 N68487e7e05bd44e9acb462b32f39ff99 schema:name Division of Vascular Surgery, Rochester Institute of Technology, University of Rochester School of Medicine, and Dentistry, 601 Elmwood Avenue, Box 652, 14642, Rochester, NY, USA
100 rdf:type schema:Organization
101 N76d2156226034c938ae05d4c202185b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Imaging, Three-Dimensional
103 rdf:type schema:DefinedTerm
104 N7ec73dabf423474ca6c68aad598d6821 rdf:first sg:person.011004600555.34
105 rdf:rest N1e3537d27a344ab894fc508b01ac23ea
106 N91181ab1f4f949b380da5a6bf00e0a01 schema:name doi
107 schema:value 10.1007/s10439-012-0691-4
108 rdf:type schema:PropertyValue
109 N920c4c8aca314c46ba7333e18e4d26ee rdf:first sg:person.0774466300.01
110 rdf:rest Nf701d99f705f44c388634ed911fdbbbe
111 N939cb24fbe014b119c0cb0732f4b799e rdf:first sg:person.0660627730.19
112 rdf:rest N7ec73dabf423474ca6c68aad598d6821
113 N994d866bf5fd4b1aa1e489b4527ef6b4 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nab84ef49e4864347a762a4239fd900cd schema:volumeNumber 41
116 rdf:type schema:PublicationVolume
117 Nc3ed6897820e4843a8d70e0f20026fe3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Finite Element Analysis
119 rdf:type schema:DefinedTerm
120 Nc620f9218830467282fb951075654eb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Models, Cardiovascular
122 rdf:type schema:DefinedTerm
123 Nce08a467b61247508c5190b529bd9227 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Artificial Intelligence
125 rdf:type schema:DefinedTerm
126 Nd8b3cfeddee74bd0b3efdfa68b0112bc schema:issueNumber 3
127 rdf:type schema:PublicationIssue
128 Nda852e0b177847418069ad134e770994 rdf:first sg:person.01046253173.69
129 rdf:rest rdf:nil
130 Ne039cecd600c4bb6b1063689e7f6115c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Tomography, X-Ray Computed
132 rdf:type schema:DefinedTerm
133 Nf701d99f705f44c388634ed911fdbbbe rdf:first sg:person.01246741357.55
134 rdf:rest Nda852e0b177847418069ad134e770994
135 Nf8be4081e74d46a7904a1f8d66b58585 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Aortic Aneurysm, Abdominal
137 rdf:type schema:DefinedTerm
138 Nff24b7d5c4e843d1a02dc7960141efbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Biomedical Engineering
140 rdf:type schema:DefinedTerm
141 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
142 schema:name Information and Computing Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
145 schema:name Artificial Intelligence and Image Processing
146 rdf:type schema:DefinedTerm
147 sg:grant.2593674 http://pending.schema.org/fundedItem sg:pub.10.1007/s10439-012-0691-4
148 rdf:type schema:MonetaryGrant
149 sg:grant.2610386 http://pending.schema.org/fundedItem sg:pub.10.1007/s10439-012-0691-4
150 rdf:type schema:MonetaryGrant
151 sg:grant.2610466 http://pending.schema.org/fundedItem sg:pub.10.1007/s10439-012-0691-4
152 rdf:type schema:MonetaryGrant
153 sg:journal.1087247 schema:issn 0145-3068
154 1573-9686
155 schema:name Annals of Biomedical Engineering
156 rdf:type schema:Periodical
157 sg:person.01046253173.69 schema:affiliation https://www.grid.ac/institutes/grid.215352.2
158 schema:familyName Finol
159 schema:givenName Ender A.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046253173.69
161 rdf:type schema:Person
162 sg:person.011004600555.34 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
163 schema:familyName Zhu
164 schema:givenName Junjun
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011004600555.34
166 rdf:type schema:Person
167 sg:person.01246741357.55 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
168 schema:familyName Eskandari
169 schema:givenName Mark K.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246741357.55
171 rdf:type schema:Person
172 sg:person.0660627730.19 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
173 schema:familyName Lee
174 schema:givenName Kibaek
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660627730.19
176 rdf:type schema:Person
177 sg:person.0764073425.77 schema:affiliation https://www.grid.ac/institutes/grid.280673.8
178 schema:familyName Muluk
179 schema:givenName Satish C.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764073425.77
181 rdf:type schema:Person
182 sg:person.07646135347.75 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
183 schema:familyName Zhang
184 schema:givenName Yongjie
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07646135347.75
186 rdf:type schema:Person
187 sg:person.0774466300.01 schema:affiliation N68487e7e05bd44e9acb462b32f39ff99
188 schema:familyName Chandra
189 schema:givenName Ankur
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774466300.01
191 rdf:type schema:Person
192 sg:person.0775056330.89 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
193 schema:familyName Shum
194 schema:givenName Judy
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775056330.89
196 rdf:type schema:Person
197 sg:pub.10.1007/bf02368182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029783791
198 https://doi.org/10.1007/bf02368182
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s10439-010-0175-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016650194
201 https://doi.org/10.1007/s10439-010-0175-3
202 rdf:type schema:CreativeWork
203 sg:pub.10.1023/b:abme.0000012746.31343.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051822214
204 https://doi.org/10.1023/b:abme.0000012746.31343.92
205 rdf:type schema:CreativeWork
206 sg:pub.10.1114/1.1306342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018897655
207 https://doi.org/10.1114/1.1306342
208 rdf:type schema:CreativeWork
209 sg:pub.10.1114/1.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031437224
210 https://doi.org/10.1114/1.202
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1002/bjs.5725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042198937
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/0741-5214(91)90249-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1053744995
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.avsg.2007.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408923
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.ejvs.2004.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016706988
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0140-6736(02)11522-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019429590
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0140-6736(04)16979-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040093141
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0140-6736(05)66459-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049829297
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s0140-6736(98)10137-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010582412
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1056/nejmoa012573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017602886
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1067/mva.2003.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049760097
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/34.57680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156559
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/tmi.2002.803108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694287
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1115/1.1351807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062068373
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1115/1.3127256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062102280
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1118/1.3284976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044922678
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1145/1656274.1656278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526411
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1152/ajpheart.1991.260.4.h1365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078044150
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1161/01.cir.0000133279.07468.9f schema:sameAs https://app.dimensions.ai/details/publication/pub.1042383165
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1177/0003319706290741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045559008
249 rdf:type schema:CreativeWork
250 https://doi.org/10.3171/jns.2005.102.2.0355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071101450
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
253 schema:name Biomedical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, 15213, Pittsburgh, PA, USA
254 Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, 15213, Pittsburgh, PA, USA
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.16753.36 schema:alternateName Northwestern University
257 schema:name Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, 676 North Saint Clair Street, Suite #650, 60611, Chicago, IL, USA
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.215352.2 schema:alternateName The University of Texas at San Antonio
260 schema:name Department of Biomedical Engineering, The University of Texas at San Antonio, One UTSA Circle, AET 1.360, 78249, San Antonio, TX, USA
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.280673.8 schema:alternateName Allegheny-Singer Research Institute
263 schema:name Division of Vascular Surgery, Allegheny-Singer Research Institute, West Penn Allegheny Health System, 14th Floor, South Tower, 320 East North Avenue, 15212, Pittsburgh, PA, USA
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...