Optimal Flow and Pressure Management in Machine Perfusion Systems for Organ Preservation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Ivo C. J. H. Post, Marcel C. Dirkes, Michal Heger, Rick Bezemer, Johan van ‘t Leven, Thomas M. van Gulik

ABSTRACT

Intra-organ flow is the most critical parameter in machine-perfused organ preservation systems (MPS). Ultrasonic flow sensors (UFS) are commonly employed in MPS. However, UFS are sensitive to changes in fluid composition and temperature and require recalibration. Novel Coriolis-type mass flow sensors (CFS) may be more suitable for MPS because the measurement technique is not amenable to these factors. The effect of viscosity, colloids, temperature, pressure, and preservation solution on flow measurement accuracy of UFS and CFS was therefore investigated. A CFS-based MPS was built and validated for setpoint stability using porcine kidneys and the ability to reproduce different pressure and flow waveforms. The UFS exhibited a temperature- and preservation solution-dependent overestimation of flow rate compared to the CFS. The CFS deviated minimally from the actual flow rate and did not require recalibration. The CFS-based MPS conformed to the preprogrammed temperature, flow, pressure, and vascular resistance settings during 6-h kidney preservation. The system was also able to accurately reproduce different pressure and flow waveforms. Conclusively, CFS-based MPS are more suitable for organ preservation than UFS-based MPS. Our CFS-based MPS provides a versatile yet robust experimental platform for testing and validating different types of clinical and experimental MPS. More... »

PAGES

2698-2707

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-012-0601-9

DOI

http://dx.doi.org/10.1007/s10439-012-0601-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011344136

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22669502


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organ Preservation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organ Preservation Solutions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Perfusion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Post", 
        "givenName": "Ivo C. J. H.", 
        "id": "sg:person.01036134227.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036134227.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dirkes", 
        "givenName": "Marcel C.", 
        "id": "sg:person.0642046246.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642046246.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heger", 
        "givenName": "Michal", 
        "id": "sg:person.01112100611.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112100611.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bezemer", 
        "givenName": "Rick", 
        "id": "sg:person.01006500704.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006500704.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cori-Tech, Bronkhorst High-Tech BV, Ruurlo, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van \u2018t Leven", 
        "givenName": "Johan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Gulik", 
        "givenName": "Thomas M.", 
        "id": "sg:person.015646004657.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646004657.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/jr9460000573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001275313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jss.2011.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006108036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trre.2011.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mot.0b013e3283446a5d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015272656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mot.0b013e3283446a5d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015272656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1085(20000215)14:2<351::aid-hyp963>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020240150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.urology.2009.12.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020711521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1014597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021507358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.6879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026734546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.6879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026734546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-6143.2008.02157.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030898384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-6143.2011.03685.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034110820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cryobiol.2010.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034559811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsbl.2005.0378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039061024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007890-198009000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040221604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007890-198009000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040221604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10731190902916380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043433506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mot.0b013e3283446b07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046744075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mot.0b013e3283446b07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046744075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-6143.2011.03755.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052399768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.flowmeasinst.2006.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052864548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/tp.0b013e31822d4e04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052879603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/tp.0b013e31822d4e04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052879603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3259972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057926533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2741/e464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070917941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075321913", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511471100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098737554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "Intra-organ flow is the most critical parameter in machine-perfused organ preservation systems (MPS). Ultrasonic flow sensors (UFS) are commonly employed in MPS. However, UFS are sensitive to changes in fluid composition and temperature and require recalibration. Novel Coriolis-type mass flow sensors (CFS) may be more suitable for MPS because the measurement technique is not amenable to these factors. The effect of viscosity, colloids, temperature, pressure, and preservation solution on flow measurement accuracy of UFS and CFS was therefore investigated. A CFS-based MPS was built and validated for setpoint stability using porcine kidneys and the ability to reproduce different pressure and flow waveforms. The UFS exhibited a temperature- and preservation solution-dependent overestimation of flow rate compared to the CFS. The CFS deviated minimally from the actual flow rate and did not require recalibration. The CFS-based MPS conformed to the preprogrammed temperature, flow, pressure, and vascular resistance settings during 6-h kidney preservation. The system was also able to accurately reproduce different pressure and flow waveforms. Conclusively, CFS-based MPS are more suitable for organ preservation than UFS-based MPS. Our CFS-based MPS provides a versatile yet robust experimental platform for testing and validating different types of clinical and experimental MPS.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-012-0601-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "Optimal Flow and Pressure Management in Machine Perfusion Systems for Organ Preservation", 
    "pagination": "2698-2707", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "360c09560c4af308c49bbf0e67d6a2bffadede79f38776352b7ec97c0d237c1f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22669502"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-012-0601-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011344136"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-012-0601-9", 
      "https://app.dimensions.ai/details/publication/pub.1011344136"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000546.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508271/"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0601-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0601-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0601-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0601-9'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      55 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-012-0601-9 schema:about N25f08370225c4bdd83232e80f21cd0a8
2 Nd4b95737bd674078a43b7774798da6af
3 Ne4147a97f7c0489b91143ed436129ba9
4 Nf5819c26d38c441786d0d6ecdcca474c
5 anzsrc-for:11
6 anzsrc-for:1103
7 schema:author Nbc8e377665a8471dbbfeaeee9efbe68e
8 schema:citation https://app.dimensions.ai/details/publication/pub.1075321913
9 https://doi.org/10.1002/(sici)1099-1085(20000215)14:2<351::aid-hyp963>3.0.co;2-k
10 https://doi.org/10.1002/bjs.6879
11 https://doi.org/10.1016/j.cryobiol.2010.03.005
12 https://doi.org/10.1016/j.flowmeasinst.2006.07.004
13 https://doi.org/10.1016/j.jss.2011.03.003
14 https://doi.org/10.1016/j.trre.2011.02.004
15 https://doi.org/10.1016/j.urology.2009.12.066
16 https://doi.org/10.1017/cbo9780511471100
17 https://doi.org/10.1039/jr9460000573
18 https://doi.org/10.1056/nejmoa1014597
19 https://doi.org/10.1063/1.3259972
20 https://doi.org/10.1080/10731190902916380
21 https://doi.org/10.1097/00007890-198009000-00001
22 https://doi.org/10.1097/mot.0b013e3283446a5d
23 https://doi.org/10.1097/mot.0b013e3283446b07
24 https://doi.org/10.1097/tp.0b013e31822d4e04
25 https://doi.org/10.1098/rsbl.2005.0378
26 https://doi.org/10.1111/j.1600-6143.2008.02157.x
27 https://doi.org/10.1111/j.1600-6143.2011.03685.x
28 https://doi.org/10.1111/j.1600-6143.2011.03755.x
29 https://doi.org/10.2741/e464
30 schema:datePublished 2012-12
31 schema:datePublishedReg 2012-12-01
32 schema:description Intra-organ flow is the most critical parameter in machine-perfused organ preservation systems (MPS). Ultrasonic flow sensors (UFS) are commonly employed in MPS. However, UFS are sensitive to changes in fluid composition and temperature and require recalibration. Novel Coriolis-type mass flow sensors (CFS) may be more suitable for MPS because the measurement technique is not amenable to these factors. The effect of viscosity, colloids, temperature, pressure, and preservation solution on flow measurement accuracy of UFS and CFS was therefore investigated. A CFS-based MPS was built and validated for setpoint stability using porcine kidneys and the ability to reproduce different pressure and flow waveforms. The UFS exhibited a temperature- and preservation solution-dependent overestimation of flow rate compared to the CFS. The CFS deviated minimally from the actual flow rate and did not require recalibration. The CFS-based MPS conformed to the preprogrammed temperature, flow, pressure, and vascular resistance settings during 6-h kidney preservation. The system was also able to accurately reproduce different pressure and flow waveforms. Conclusively, CFS-based MPS are more suitable for organ preservation than UFS-based MPS. Our CFS-based MPS provides a versatile yet robust experimental platform for testing and validating different types of clinical and experimental MPS.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N127ddeb15e904c0ab220cdc4b8a7b9e2
37 N17d81fbbe398472ea4953203a1d12638
38 sg:journal.1087247
39 schema:name Optimal Flow and Pressure Management in Machine Perfusion Systems for Organ Preservation
40 schema:pagination 2698-2707
41 schema:productId N06e1ad061a4846eb92964550c306f9a3
42 N0afb8ee35c7f4f61be73255ae889d3f0
43 N2893b7ce7a034403b0c1a2d04142e99d
44 N8a29f2fe8e2d41bd9ef83ffda87f95b0
45 Ndc848e4d4b6442988728af1ce1d87c53
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011344136
47 https://doi.org/10.1007/s10439-012-0601-9
48 schema:sdDatePublished 2019-04-10T15:07
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ned0a552d9a3e4ee79b3f7ae5e0701645
51 schema:url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508271/
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N06e1ad061a4846eb92964550c306f9a3 schema:name readcube_id
56 schema:value 360c09560c4af308c49bbf0e67d6a2bffadede79f38776352b7ec97c0d237c1f
57 rdf:type schema:PropertyValue
58 N0afb8ee35c7f4f61be73255ae889d3f0 schema:name pubmed_id
59 schema:value 22669502
60 rdf:type schema:PropertyValue
61 N0c3c4e44cd2d4c2186034f6f8364ecda schema:name Cori-Tech, Bronkhorst High-Tech BV, Ruurlo, The Netherlands
62 rdf:type schema:Organization
63 N127ddeb15e904c0ab220cdc4b8a7b9e2 schema:volumeNumber 40
64 rdf:type schema:PublicationVolume
65 N17d81fbbe398472ea4953203a1d12638 schema:issueNumber 12
66 rdf:type schema:PublicationIssue
67 N25f08370225c4bdd83232e80f21cd0a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Perfusion
69 rdf:type schema:DefinedTerm
70 N2893b7ce7a034403b0c1a2d04142e99d schema:name doi
71 schema:value 10.1007/s10439-012-0601-9
72 rdf:type schema:PropertyValue
73 N4b6e149ed29c4c31a4ac62766aec78ef schema:name Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
74 rdf:type schema:Organization
75 N8a29f2fe8e2d41bd9ef83ffda87f95b0 schema:name nlm_unique_id
76 schema:value 0361512
77 rdf:type schema:PropertyValue
78 N8d7b6a66bff34f3599fd2812dcae244c rdf:first sg:person.01006500704.22
79 rdf:rest Ncf1a476727904dd1bce886b8af9ae411
80 N9ab15300525843c48f7c8f1cd831dbcf rdf:first sg:person.0642046246.05
81 rdf:rest Nc8e12fc7119a46c7b57eb08aa0ec828f
82 N9fec89ab4a924d8892ae46154e669f08 schema:name Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
83 rdf:type schema:Organization
84 Na478d3a28d86499b9a7735a4da8937c9 schema:name Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
85 rdf:type schema:Organization
86 Nbc8e377665a8471dbbfeaeee9efbe68e rdf:first sg:person.01036134227.35
87 rdf:rest N9ab15300525843c48f7c8f1cd831dbcf
88 Nc8e12fc7119a46c7b57eb08aa0ec828f rdf:first sg:person.01112100611.55
89 rdf:rest N8d7b6a66bff34f3599fd2812dcae244c
90 Ncf1a476727904dd1bce886b8af9ae411 rdf:first Nf7b33a86079c49f686d37cea5715e6ae
91 rdf:rest Nec5325e3bb8f4126b77c7a9ab0ea770a
92 Nd4b95737bd674078a43b7774798da6af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Humans
94 rdf:type schema:DefinedTerm
95 Ndc848e4d4b6442988728af1ce1d87c53 schema:name dimensions_id
96 schema:value pub.1011344136
97 rdf:type schema:PropertyValue
98 Ne4147a97f7c0489b91143ed436129ba9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Organ Preservation Solutions
100 rdf:type schema:DefinedTerm
101 Neb7e534c1db54e7a9b2b43bac092d695 schema:name Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
102 rdf:type schema:Organization
103 Nec5325e3bb8f4126b77c7a9ab0ea770a rdf:first sg:person.015646004657.26
104 rdf:rest rdf:nil
105 Ned0a552d9a3e4ee79b3f7ae5e0701645 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nf5819c26d38c441786d0d6ecdcca474c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Organ Preservation
109 rdf:type schema:DefinedTerm
110 Nf7b33a86079c49f686d37cea5715e6ae schema:affiliation N0c3c4e44cd2d4c2186034f6f8364ecda
111 schema:familyName van ‘t Leven
112 schema:givenName Johan
113 rdf:type schema:Person
114 Nfa130e9213aa4588afc88f020b5abcea schema:name Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
115 rdf:type schema:Organization
116 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
117 schema:name Medical and Health Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
120 schema:name Clinical Sciences
121 rdf:type schema:DefinedTerm
122 sg:journal.1087247 schema:issn 0145-3068
123 1573-9686
124 schema:name Annals of Biomedical Engineering
125 rdf:type schema:Periodical
126 sg:person.01006500704.22 schema:affiliation N4b6e149ed29c4c31a4ac62766aec78ef
127 schema:familyName Bezemer
128 schema:givenName Rick
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006500704.22
130 rdf:type schema:Person
131 sg:person.01036134227.35 schema:affiliation Neb7e534c1db54e7a9b2b43bac092d695
132 schema:familyName Post
133 schema:givenName Ivo C. J. H.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036134227.35
135 rdf:type schema:Person
136 sg:person.01112100611.55 schema:affiliation Nfa130e9213aa4588afc88f020b5abcea
137 schema:familyName Heger
138 schema:givenName Michal
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112100611.55
140 rdf:type schema:Person
141 sg:person.015646004657.26 schema:affiliation N9fec89ab4a924d8892ae46154e669f08
142 schema:familyName van Gulik
143 schema:givenName Thomas M.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646004657.26
145 rdf:type schema:Person
146 sg:person.0642046246.05 schema:affiliation Na478d3a28d86499b9a7735a4da8937c9
147 schema:familyName Dirkes
148 schema:givenName Marcel C.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642046246.05
150 rdf:type schema:Person
151 https://app.dimensions.ai/details/publication/pub.1075321913 schema:CreativeWork
152 https://doi.org/10.1002/(sici)1099-1085(20000215)14:2<351::aid-hyp963>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1020240150
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/bjs.6879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026734546
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.cryobiol.2010.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034559811
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.flowmeasinst.2006.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052864548
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jss.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006108036
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.trre.2011.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009360175
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.urology.2009.12.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020711521
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1017/cbo9780511471100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098737554
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1039/jr9460000573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001275313
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1056/nejmoa1014597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021507358
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.3259972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057926533
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1080/10731190902916380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043433506
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1097/00007890-198009000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040221604
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1097/mot.0b013e3283446a5d schema:sameAs https://app.dimensions.ai/details/publication/pub.1015272656
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1097/mot.0b013e3283446b07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046744075
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1097/tp.0b013e31822d4e04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052879603
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1098/rsbl.2005.0378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039061024
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1111/j.1600-6143.2008.02157.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030898384
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/j.1600-6143.2011.03685.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034110820
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/j.1600-6143.2011.03755.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052399768
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2741/e464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070917941
193 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...