Optimal Flow and Pressure Management in Machine Perfusion Systems for Organ Preservation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Ivo C. J. H. Post, Marcel C. Dirkes, Michal Heger, Rick Bezemer, Johan van ‘t Leven, Thomas M. van Gulik

ABSTRACT

Intra-organ flow is the most critical parameter in machine-perfused organ preservation systems (MPS). Ultrasonic flow sensors (UFS) are commonly employed in MPS. However, UFS are sensitive to changes in fluid composition and temperature and require recalibration. Novel Coriolis-type mass flow sensors (CFS) may be more suitable for MPS because the measurement technique is not amenable to these factors. The effect of viscosity, colloids, temperature, pressure, and preservation solution on flow measurement accuracy of UFS and CFS was therefore investigated. A CFS-based MPS was built and validated for setpoint stability using porcine kidneys and the ability to reproduce different pressure and flow waveforms. The UFS exhibited a temperature- and preservation solution-dependent overestimation of flow rate compared to the CFS. The CFS deviated minimally from the actual flow rate and did not require recalibration. The CFS-based MPS conformed to the preprogrammed temperature, flow, pressure, and vascular resistance settings during 6-h kidney preservation. The system was also able to accurately reproduce different pressure and flow waveforms. Conclusively, CFS-based MPS are more suitable for organ preservation than UFS-based MPS. Our CFS-based MPS provides a versatile yet robust experimental platform for testing and validating different types of clinical and experimental MPS. More... »

PAGES

2698-2707

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-012-0601-9

DOI

http://dx.doi.org/10.1007/s10439-012-0601-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011344136

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22669502


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organ Preservation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organ Preservation Solutions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Perfusion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Post", 
        "givenName": "Ivo C. J. H.", 
        "id": "sg:person.01036134227.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036134227.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dirkes", 
        "givenName": "Marcel C.", 
        "id": "sg:person.0642046246.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642046246.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heger", 
        "givenName": "Michal", 
        "id": "sg:person.01112100611.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112100611.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bezemer", 
        "givenName": "Rick", 
        "id": "sg:person.01006500704.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006500704.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cori-Tech, Bronkhorst High-Tech BV, Ruurlo, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van \u2018t Leven", 
        "givenName": "Johan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Gulik", 
        "givenName": "Thomas M.", 
        "id": "sg:person.015646004657.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646004657.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/jr9460000573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001275313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jss.2011.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006108036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trre.2011.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mot.0b013e3283446a5d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015272656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mot.0b013e3283446a5d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015272656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1085(20000215)14:2<351::aid-hyp963>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020240150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.urology.2009.12.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020711521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1014597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021507358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.6879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026734546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.6879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026734546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-6143.2008.02157.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030898384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-6143.2011.03685.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034110820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cryobiol.2010.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034559811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsbl.2005.0378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039061024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007890-198009000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040221604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00007890-198009000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040221604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10731190902916380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043433506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mot.0b013e3283446b07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046744075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mot.0b013e3283446b07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046744075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-6143.2011.03755.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052399768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.flowmeasinst.2006.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052864548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/tp.0b013e31822d4e04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052879603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/tp.0b013e31822d4e04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052879603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3259972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057926533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2741/e464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070917941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075321913", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511471100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098737554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "Intra-organ flow is the most critical parameter in machine-perfused organ preservation systems (MPS). Ultrasonic flow sensors (UFS) are commonly employed in MPS. However, UFS are sensitive to changes in fluid composition and temperature and require recalibration. Novel Coriolis-type mass flow sensors (CFS) may be more suitable for MPS because the measurement technique is not amenable to these factors. The effect of viscosity, colloids, temperature, pressure, and preservation solution on flow measurement accuracy of UFS and CFS was therefore investigated. A CFS-based MPS was built and validated for setpoint stability using porcine kidneys and the ability to reproduce different pressure and flow waveforms. The UFS exhibited a temperature- and preservation solution-dependent overestimation of flow rate compared to the CFS. The CFS deviated minimally from the actual flow rate and did not require recalibration. The CFS-based MPS conformed to the preprogrammed temperature, flow, pressure, and vascular resistance settings during 6-h kidney preservation. The system was also able to accurately reproduce different pressure and flow waveforms. Conclusively, CFS-based MPS are more suitable for organ preservation than UFS-based MPS. Our CFS-based MPS provides a versatile yet robust experimental platform for testing and validating different types of clinical and experimental MPS.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-012-0601-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "Optimal Flow and Pressure Management in Machine Perfusion Systems for Organ Preservation", 
    "pagination": "2698-2707", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "360c09560c4af308c49bbf0e67d6a2bffadede79f38776352b7ec97c0d237c1f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22669502"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-012-0601-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011344136"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-012-0601-9", 
      "https://app.dimensions.ai/details/publication/pub.1011344136"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000546.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508271/"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0601-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0601-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0601-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-012-0601-9'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      55 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-012-0601-9 schema:about N0c05d3ec8e5a49259664dd68cf226361
2 N2b2e90483b574def88dd5c65e421e19e
3 N841a3eb137f94beb9860d867abd23bd6
4 Nc1fc0ce811f74cb5b98f9d5cc613b94f
5 anzsrc-for:11
6 anzsrc-for:1103
7 schema:author N7924432fa4f64365be004470193635f3
8 schema:citation https://app.dimensions.ai/details/publication/pub.1075321913
9 https://doi.org/10.1002/(sici)1099-1085(20000215)14:2<351::aid-hyp963>3.0.co;2-k
10 https://doi.org/10.1002/bjs.6879
11 https://doi.org/10.1016/j.cryobiol.2010.03.005
12 https://doi.org/10.1016/j.flowmeasinst.2006.07.004
13 https://doi.org/10.1016/j.jss.2011.03.003
14 https://doi.org/10.1016/j.trre.2011.02.004
15 https://doi.org/10.1016/j.urology.2009.12.066
16 https://doi.org/10.1017/cbo9780511471100
17 https://doi.org/10.1039/jr9460000573
18 https://doi.org/10.1056/nejmoa1014597
19 https://doi.org/10.1063/1.3259972
20 https://doi.org/10.1080/10731190902916380
21 https://doi.org/10.1097/00007890-198009000-00001
22 https://doi.org/10.1097/mot.0b013e3283446a5d
23 https://doi.org/10.1097/mot.0b013e3283446b07
24 https://doi.org/10.1097/tp.0b013e31822d4e04
25 https://doi.org/10.1098/rsbl.2005.0378
26 https://doi.org/10.1111/j.1600-6143.2008.02157.x
27 https://doi.org/10.1111/j.1600-6143.2011.03685.x
28 https://doi.org/10.1111/j.1600-6143.2011.03755.x
29 https://doi.org/10.2741/e464
30 schema:datePublished 2012-12
31 schema:datePublishedReg 2012-12-01
32 schema:description Intra-organ flow is the most critical parameter in machine-perfused organ preservation systems (MPS). Ultrasonic flow sensors (UFS) are commonly employed in MPS. However, UFS are sensitive to changes in fluid composition and temperature and require recalibration. Novel Coriolis-type mass flow sensors (CFS) may be more suitable for MPS because the measurement technique is not amenable to these factors. The effect of viscosity, colloids, temperature, pressure, and preservation solution on flow measurement accuracy of UFS and CFS was therefore investigated. A CFS-based MPS was built and validated for setpoint stability using porcine kidneys and the ability to reproduce different pressure and flow waveforms. The UFS exhibited a temperature- and preservation solution-dependent overestimation of flow rate compared to the CFS. The CFS deviated minimally from the actual flow rate and did not require recalibration. The CFS-based MPS conformed to the preprogrammed temperature, flow, pressure, and vascular resistance settings during 6-h kidney preservation. The system was also able to accurately reproduce different pressure and flow waveforms. Conclusively, CFS-based MPS are more suitable for organ preservation than UFS-based MPS. Our CFS-based MPS provides a versatile yet robust experimental platform for testing and validating different types of clinical and experimental MPS.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N15a0e12c6dfe49c995799803b4e99794
37 N6ca83902752747d395943ddbcc3fc9a3
38 sg:journal.1087247
39 schema:name Optimal Flow and Pressure Management in Machine Perfusion Systems for Organ Preservation
40 schema:pagination 2698-2707
41 schema:productId N26ccd607ef4f4950b1fdc8a73a54eae7
42 N3c35c96bfbc04df2b2a67bf45c84f4c0
43 N4ed470c9e0084ce9be6ccddf2b6121fe
44 Nc7fccfaf58ed4684a329a2f98b6b7f81
45 Nd607ee7f5f69488fb6eeb37cb38a776d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011344136
47 https://doi.org/10.1007/s10439-012-0601-9
48 schema:sdDatePublished 2019-04-10T15:07
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Na026ee7cd29d4b77bb3ab262a3737fb9
51 schema:url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508271/
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0c05d3ec8e5a49259664dd68cf226361 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Organ Preservation Solutions
57 rdf:type schema:DefinedTerm
58 N0e2bf5c4375c4e079198ebc7c2e86a86 schema:affiliation Nea561591b83b4d4c80c653a013fa9c1b
59 schema:familyName van ‘t Leven
60 schema:givenName Johan
61 rdf:type schema:Person
62 N15a0e12c6dfe49c995799803b4e99794 schema:issueNumber 12
63 rdf:type schema:PublicationIssue
64 N1d92f6289b954e269b3b97a15992a3ef rdf:first sg:person.01112100611.55
65 rdf:rest Nc369a27359e84d509b90d2fb75eec95a
66 N26ccd607ef4f4950b1fdc8a73a54eae7 schema:name nlm_unique_id
67 schema:value 0361512
68 rdf:type schema:PropertyValue
69 N2b2e90483b574def88dd5c65e421e19e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Perfusion
71 rdf:type schema:DefinedTerm
72 N3c35c96bfbc04df2b2a67bf45c84f4c0 schema:name readcube_id
73 schema:value 360c09560c4af308c49bbf0e67d6a2bffadede79f38776352b7ec97c0d237c1f
74 rdf:type schema:PropertyValue
75 N4ed470c9e0084ce9be6ccddf2b6121fe schema:name dimensions_id
76 schema:value pub.1011344136
77 rdf:type schema:PropertyValue
78 N6ca83902752747d395943ddbcc3fc9a3 schema:volumeNumber 40
79 rdf:type schema:PublicationVolume
80 N7924432fa4f64365be004470193635f3 rdf:first sg:person.01036134227.35
81 rdf:rest Nf97225d247db407c8ac8d915ebe8a1cd
82 N800218364b3b4d71aed709db3a1670d3 schema:name Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
83 rdf:type schema:Organization
84 N841a3eb137f94beb9860d867abd23bd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Humans
86 rdf:type schema:DefinedTerm
87 Na026ee7cd29d4b77bb3ab262a3737fb9 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Na785dd20e13e49c2a061567818eedd0e schema:name Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
90 rdf:type schema:Organization
91 Nad487670e6814c8298ff701b8d3f49e1 schema:name Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
92 rdf:type schema:Organization
93 Nb4fc9c1e85b146c1a78533b6f7404a6c rdf:first sg:person.015646004657.26
94 rdf:rest rdf:nil
95 Nb52552364b9944c68fce2c98e4895014 schema:name Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
96 rdf:type schema:Organization
97 Nc1fc0ce811f74cb5b98f9d5cc613b94f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Organ Preservation
99 rdf:type schema:DefinedTerm
100 Nc369a27359e84d509b90d2fb75eec95a rdf:first sg:person.01006500704.22
101 rdf:rest Nd0d9e6856621459d9d285acfa9d85382
102 Nc7fccfaf58ed4684a329a2f98b6b7f81 schema:name pubmed_id
103 schema:value 22669502
104 rdf:type schema:PropertyValue
105 Nd0d9e6856621459d9d285acfa9d85382 rdf:first N0e2bf5c4375c4e079198ebc7c2e86a86
106 rdf:rest Nb4fc9c1e85b146c1a78533b6f7404a6c
107 Nd607ee7f5f69488fb6eeb37cb38a776d schema:name doi
108 schema:value 10.1007/s10439-012-0601-9
109 rdf:type schema:PropertyValue
110 Nea561591b83b4d4c80c653a013fa9c1b schema:name Cori-Tech, Bronkhorst High-Tech BV, Ruurlo, The Netherlands
111 rdf:type schema:Organization
112 Nf1e44b6953f84b9ba59c49d280b21a8c schema:name Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
113 rdf:type schema:Organization
114 Nf97225d247db407c8ac8d915ebe8a1cd rdf:first sg:person.0642046246.05
115 rdf:rest N1d92f6289b954e269b3b97a15992a3ef
116 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
117 schema:name Medical and Health Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
120 schema:name Clinical Sciences
121 rdf:type schema:DefinedTerm
122 sg:journal.1087247 schema:issn 0145-3068
123 1573-9686
124 schema:name Annals of Biomedical Engineering
125 rdf:type schema:Periodical
126 sg:person.01006500704.22 schema:affiliation Nb52552364b9944c68fce2c98e4895014
127 schema:familyName Bezemer
128 schema:givenName Rick
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006500704.22
130 rdf:type schema:Person
131 sg:person.01036134227.35 schema:affiliation Na785dd20e13e49c2a061567818eedd0e
132 schema:familyName Post
133 schema:givenName Ivo C. J. H.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036134227.35
135 rdf:type schema:Person
136 sg:person.01112100611.55 schema:affiliation Nf1e44b6953f84b9ba59c49d280b21a8c
137 schema:familyName Heger
138 schema:givenName Michal
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112100611.55
140 rdf:type schema:Person
141 sg:person.015646004657.26 schema:affiliation N800218364b3b4d71aed709db3a1670d3
142 schema:familyName van Gulik
143 schema:givenName Thomas M.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646004657.26
145 rdf:type schema:Person
146 sg:person.0642046246.05 schema:affiliation Nad487670e6814c8298ff701b8d3f49e1
147 schema:familyName Dirkes
148 schema:givenName Marcel C.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642046246.05
150 rdf:type schema:Person
151 https://app.dimensions.ai/details/publication/pub.1075321913 schema:CreativeWork
152 https://doi.org/10.1002/(sici)1099-1085(20000215)14:2<351::aid-hyp963>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1020240150
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/bjs.6879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026734546
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.cryobiol.2010.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034559811
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.flowmeasinst.2006.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052864548
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jss.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006108036
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.trre.2011.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009360175
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.urology.2009.12.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020711521
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1017/cbo9780511471100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098737554
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1039/jr9460000573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001275313
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1056/nejmoa1014597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021507358
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.3259972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057926533
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1080/10731190902916380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043433506
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1097/00007890-198009000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040221604
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1097/mot.0b013e3283446a5d schema:sameAs https://app.dimensions.ai/details/publication/pub.1015272656
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1097/mot.0b013e3283446b07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046744075
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1097/tp.0b013e31822d4e04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052879603
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1098/rsbl.2005.0378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039061024
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1111/j.1600-6143.2008.02157.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030898384
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/j.1600-6143.2011.03685.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034110820
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/j.1600-6143.2011.03755.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052399768
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2741/e464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070917941
193 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...