Proposed Spring Network Cell Model Based on a Minimum Energy Concept View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04

AUTHORS

Yoshihiro Ujihara, Masanori Nakamura, Hiroshi Miyazaki, Shigeo Wada

ABSTRACT

We developed a mechano-cell model incorporating a cell membrane, a nuclear envelope, and actin filaments to simulate the mechanical behavior of a cell during tensile tests. The computational model depicts a cell as a combination of various spring elements in the framework of the minimum energy concept. A cell membrane and a nuclear envelope are both modeled as shells of a spring network that express elastic resistance to changes in bending, stretching, and surface area. A bundle of actin filaments is represented by a mechanical spring that generates a force as a function of its extension. The interaction between the nuclear envelope and the cell membrane is expressed by a potential energy function with respect to the distance between them. Incompressibility of a cell is assured by a volume elastic energy function. The cell shape during a tensile test is determined by a quasi-static approach, such that the total elastic energy converges to the minimum. The load-deformation curve obtained from the simulation shows a significant increase in stretching load with deformation of the cell and lies within a range of experimentally obtained load-deformation curves. The total elastic energy is dominated by the energy stored in the actin fibers. Actin fibers that are randomly oriented before loading tend to become aligned, passively, in the stretched direction. These results attribute the non-linearity in the load-deformation curve to passive reorientation of actin fibers in the stretched direction. More... »

PAGES

1530-1538

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-010-9930-8

DOI

http://dx.doi.org/10.1007/s10439-010-9930-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040972643

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20108165


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Physiological Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elastic Modulus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hardness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Division of Bioengineering, Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho Toyonaka, 560-8531, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ujihara", 
        "givenName": "Yoshihiro", 
        "id": "sg:person.01045737433.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045737433.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Masanori", 
        "id": "sg:person.016250035251.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250035251.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Division of Bioengineering, Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho Toyonaka, 560-8531, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyazaki", 
        "givenName": "Hiroshi", 
        "id": "sg:person.013442670375.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013442670375.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Division of Bioengineering, Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho Toyonaka, 560-8531, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wada", 
        "givenName": "Shigeo", 
        "id": "sg:person.015433456551.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015433456551.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1529/biophysj.103.037044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001185078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.32.1.162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001556085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bb.23.060194.004035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002341557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(03)74753-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011656609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00269.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013155232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9290(01)00201-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015569081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sca.1998.4950200504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022469775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sca.1998.4950200504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022469775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2004.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025117856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9290(99)00161-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028726368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00595.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028736872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(04)74245-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035561302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmbbm.2008.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036026112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1299/kikaia.69.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038441653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2004.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041645134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80529-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043758792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2006.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046174729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2891183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062089897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/jomms.2007.2.1087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069061333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/jomms.2007.2.1087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069061333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22203/ecm.v007a03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069338736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074754611", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075196922", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077242899", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082752955", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083176186", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1998.274.5.c1283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083272051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1998.274.5.c1283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083272051"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04", 
    "datePublishedReg": "2010-04-01", 
    "description": "We developed a mechano-cell model incorporating a cell membrane, a nuclear envelope, and actin filaments to simulate the mechanical behavior of a cell during tensile tests. The computational model depicts a cell as a combination of various spring elements in the framework of the minimum energy concept. A cell membrane and a nuclear envelope are both modeled as shells of a spring network that express elastic resistance to changes in bending, stretching, and surface area. A bundle of actin filaments is represented by a mechanical spring that generates a force as a function of its extension. The interaction between the nuclear envelope and the cell membrane is expressed by a potential energy function with respect to the distance between them. Incompressibility of a cell is assured by a volume elastic energy function. The cell shape during a tensile test is determined by a quasi-static approach, such that the total elastic energy converges to the minimum. The load-deformation curve obtained from the simulation shows a significant increase in stretching load with deformation of the cell and lies within a range of experimentally obtained load-deformation curves. The total elastic energy is dominated by the energy stored in the actin fibers. Actin fibers that are randomly oriented before loading tend to become aligned, passively, in the stretched direction. These results attribute the non-linearity in the load-deformation curve to passive reorientation of actin fibers in the stretched direction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-010-9930-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Proposed Spring Network Cell Model Based on a Minimum Energy Concept", 
    "pagination": "1530-1538", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c32e60cfeed36f34953c7648f9631d287f5a0e457f393edb80bd9efee06a9ea2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20108165"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-010-9930-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040972643"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-010-9930-8", 
      "https://app.dimensions.ai/details/publication/pub.1040972643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10439-010-9930-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-010-9930-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-010-9930-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-010-9930-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-010-9930-8'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      62 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-010-9930-8 schema:about N2a65903dde80421c94992b0ffa5f0ab3
2 N349ca4ab2af24944ae2185af8dc517e8
3 N7e34687a2c4d4ecf88cc80c62ac555ca
4 N840063e61c9440e981042ca0a7e5ab6c
5 Nb87eeefdd1014231b79cd1fc48b5ae66
6 Nbb918ced69ef4f318e04b86b26d0d069
7 Nbd106d5a434d478396970d167b1c05c2
8 Nfc33ab7daf0a4d98bf4d42a6a2bc0d53
9 anzsrc-for:02
10 anzsrc-for:0299
11 schema:author N118e8558a2104afe9dc3e1e7a377f97d
12 schema:citation https://app.dimensions.ai/details/publication/pub.1074754611
13 https://app.dimensions.ai/details/publication/pub.1075196922
14 https://app.dimensions.ai/details/publication/pub.1077242899
15 https://app.dimensions.ai/details/publication/pub.1082752955
16 https://app.dimensions.ai/details/publication/pub.1083176186
17 https://doi.org/10.1002/sca.1998.4950200504
18 https://doi.org/10.1016/j.jbiomech.2004.07.016
19 https://doi.org/10.1016/j.jbiomech.2004.11.019
20 https://doi.org/10.1016/j.jbiomech.2006.09.023
21 https://doi.org/10.1016/j.jmbbm.2008.07.003
22 https://doi.org/10.1016/s0006-3495(03)74753-5
23 https://doi.org/10.1016/s0006-3495(04)74245-9
24 https://doi.org/10.1016/s0006-3495(94)80529-6
25 https://doi.org/10.1016/s0021-9290(01)00201-9
26 https://doi.org/10.1016/s0021-9290(99)00161-x
27 https://doi.org/10.1115/1.2891183
28 https://doi.org/10.1146/annurev.bb.23.060194.004035
29 https://doi.org/10.1152/ajpcell.00269.2001
30 https://doi.org/10.1152/ajpcell.1998.274.5.c1283
31 https://doi.org/10.1152/japplphysiol.00595.2003
32 https://doi.org/10.1161/01.hyp.32.1.162
33 https://doi.org/10.1299/kikaia.69.14
34 https://doi.org/10.1529/biophysj.103.037044
35 https://doi.org/10.2140/jomms.2007.2.1087
36 https://doi.org/10.22203/ecm.v007a03
37 schema:datePublished 2010-04
38 schema:datePublishedReg 2010-04-01
39 schema:description We developed a mechano-cell model incorporating a cell membrane, a nuclear envelope, and actin filaments to simulate the mechanical behavior of a cell during tensile tests. The computational model depicts a cell as a combination of various spring elements in the framework of the minimum energy concept. A cell membrane and a nuclear envelope are both modeled as shells of a spring network that express elastic resistance to changes in bending, stretching, and surface area. A bundle of actin filaments is represented by a mechanical spring that generates a force as a function of its extension. The interaction between the nuclear envelope and the cell membrane is expressed by a potential energy function with respect to the distance between them. Incompressibility of a cell is assured by a volume elastic energy function. The cell shape during a tensile test is determined by a quasi-static approach, such that the total elastic energy converges to the minimum. The load-deformation curve obtained from the simulation shows a significant increase in stretching load with deformation of the cell and lies within a range of experimentally obtained load-deformation curves. The total elastic energy is dominated by the energy stored in the actin fibers. Actin fibers that are randomly oriented before loading tend to become aligned, passively, in the stretched direction. These results attribute the non-linearity in the load-deformation curve to passive reorientation of actin fibers in the stretched direction.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N673c019423dc4bb5ada56d01f521a93b
44 Neb87b061ccc44eb2befa48952eb08ac7
45 sg:journal.1087247
46 schema:name Proposed Spring Network Cell Model Based on a Minimum Energy Concept
47 schema:pagination 1530-1538
48 schema:productId N34e10b30ab9640d393bf2bf34ac01425
49 N36b866f30b374d5b8dbf28a0697f018c
50 N415061d0da084b4e80690d8198745fe1
51 Na9edc11407084a2095a0fbb09b3444d8
52 Nbf5ab90e93ee4845bd00d8ae3cbcf498
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040972643
54 https://doi.org/10.1007/s10439-010-9930-8
55 schema:sdDatePublished 2019-04-11T09:53
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Ndb7d4f055d4f460baf4d7722768b7f00
58 schema:url http://link.springer.com/10.1007%2Fs10439-010-9930-8
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0c5edf24d2b3415fbb68ecf9e2dcf0cf rdf:first sg:person.013442670375.19
63 rdf:rest N741de70862b547c797afd2aff9f72b3a
64 N118e8558a2104afe9dc3e1e7a377f97d rdf:first sg:person.01045737433.66
65 rdf:rest Na473c354321f47969d1e079761fe1580
66 N2a65903dde80421c94992b0ffa5f0ab3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Elastic Modulus
68 rdf:type schema:DefinedTerm
69 N349ca4ab2af24944ae2185af8dc517e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Humans
71 rdf:type schema:DefinedTerm
72 N34e10b30ab9640d393bf2bf34ac01425 schema:name nlm_unique_id
73 schema:value 0361512
74 rdf:type schema:PropertyValue
75 N36b866f30b374d5b8dbf28a0697f018c schema:name readcube_id
76 schema:value c32e60cfeed36f34953c7648f9631d287f5a0e457f393edb80bd9efee06a9ea2
77 rdf:type schema:PropertyValue
78 N415061d0da084b4e80690d8198745fe1 schema:name doi
79 schema:value 10.1007/s10439-010-9930-8
80 rdf:type schema:PropertyValue
81 N673c019423dc4bb5ada56d01f521a93b schema:volumeNumber 38
82 rdf:type schema:PublicationVolume
83 N741de70862b547c797afd2aff9f72b3a rdf:first sg:person.015433456551.15
84 rdf:rest rdf:nil
85 N7e34687a2c4d4ecf88cc80c62ac555ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Animals
87 rdf:type schema:DefinedTerm
88 N840063e61c9440e981042ca0a7e5ab6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Computer Simulation
90 rdf:type schema:DefinedTerm
91 Na473c354321f47969d1e079761fe1580 rdf:first sg:person.016250035251.11
92 rdf:rest N0c5edf24d2b3415fbb68ecf9e2dcf0cf
93 Na9edc11407084a2095a0fbb09b3444d8 schema:name dimensions_id
94 schema:value pub.1040972643
95 rdf:type schema:PropertyValue
96 Nb87eeefdd1014231b79cd1fc48b5ae66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Hardness
98 rdf:type schema:DefinedTerm
99 Nbb918ced69ef4f318e04b86b26d0d069 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Energy Transfer
101 rdf:type schema:DefinedTerm
102 Nbd106d5a434d478396970d167b1c05c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Cell Physiological Phenomena
104 rdf:type schema:DefinedTerm
105 Nbf5ab90e93ee4845bd00d8ae3cbcf498 schema:name pubmed_id
106 schema:value 20108165
107 rdf:type schema:PropertyValue
108 Ndb7d4f055d4f460baf4d7722768b7f00 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Neb87b061ccc44eb2befa48952eb08ac7 schema:issueNumber 4
111 rdf:type schema:PublicationIssue
112 Nfc33ab7daf0a4d98bf4d42a6a2bc0d53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Models, Biological
114 rdf:type schema:DefinedTerm
115 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
119 schema:name Other Physical Sciences
120 rdf:type schema:DefinedTerm
121 sg:journal.1087247 schema:issn 0145-3068
122 1573-9686
123 schema:name Annals of Biomedical Engineering
124 rdf:type schema:Periodical
125 sg:person.01045737433.66 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
126 schema:familyName Ujihara
127 schema:givenName Yoshihiro
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045737433.66
129 rdf:type schema:Person
130 sg:person.013442670375.19 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
131 schema:familyName Miyazaki
132 schema:givenName Hiroshi
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013442670375.19
134 rdf:type schema:Person
135 sg:person.015433456551.15 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
136 schema:familyName Wada
137 schema:givenName Shigeo
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015433456551.15
139 rdf:type schema:Person
140 sg:person.016250035251.11 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
141 schema:familyName Nakamura
142 schema:givenName Masanori
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250035251.11
144 rdf:type schema:Person
145 https://app.dimensions.ai/details/publication/pub.1074754611 schema:CreativeWork
146 https://app.dimensions.ai/details/publication/pub.1075196922 schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1077242899 schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1082752955 schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1083176186 schema:CreativeWork
150 https://doi.org/10.1002/sca.1998.4950200504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022469775
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jbiomech.2004.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025117856
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jbiomech.2004.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041645134
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jbiomech.2006.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046174729
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jmbbm.2008.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036026112
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0006-3495(03)74753-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011656609
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0006-3495(04)74245-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035561302
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0006-3495(94)80529-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043758792
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0021-9290(01)00201-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015569081
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0021-9290(99)00161-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028726368
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1115/1.2891183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062089897
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1146/annurev.bb.23.060194.004035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002341557
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1152/ajpcell.00269.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013155232
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1152/ajpcell.1998.274.5.c1283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083272051
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1152/japplphysiol.00595.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028736872
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1161/01.hyp.32.1.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001556085
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1299/kikaia.69.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038441653
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1529/biophysj.103.037044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001185078
185 rdf:type schema:CreativeWork
186 https://doi.org/10.2140/jomms.2007.2.1087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069061333
187 rdf:type schema:CreativeWork
188 https://doi.org/10.22203/ecm.v007a03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069338736
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
191 schema:name Division of Bioengineering, Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho Toyonaka, 560-8531, Osaka, Japan
192 The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...