Validation of a Semi-Classical Signal Analysis Method for Stroke Volume Variation Assessment: A Comparison with the PiCCO Technique View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-12

AUTHORS

Taous-Meriem Laleg-Kirati, Claire Médigue, Yves Papelier, François Cottin, Andry Van de Louw

ABSTRACT

This study proposes a Semi-Classical Signal Analysis (SCSA) method for stroke volume (SV) variations assessment from arterial blood pressure measurements. One of the SCSA parameters, the first systolic invariant (INVS₁), has been shown to be linearly related to SV. To technically validate this approach, the comparison between INVS₁ and SV measured with the currently used PiCCO technique was performed during a 15-min recording in 20 mechanically ventilated patients in intensive care. A strong correlation was estimated by linear regression and cross-correlation analysis (mean coefficient = 0.90 ± 0.01 SEM at the two tests). More... »

PAGES

3618-3629

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-010-0118-z

DOI

http://dx.doi.org/10.1007/s10439-010-0118-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003495683

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20614241


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac Output", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration, Artificial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke Volume", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systole", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodilution", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INRIA Bordeaux Sud-Ouest, UFR Sciences, B\u00e2timent B1, Universit\u00e9 de Pau et des Pays de l\u2019Adour, B.P. 1155, 64013, Pau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laleg-Kirati", 
        "givenName": "Taous-Meriem", 
        "id": "sg:person.01261533745.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261533745.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRIA-Rocquencourt, B.P. 105, 78153, Le Chesnay cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e9digue", 
        "givenName": "Claire", 
        "id": "sg:person.011763113244.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763113244.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "EA 3544 EFM H\u00f4pital Antoine B\u00e9cl\u00e8re 92141, Clamart, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Papelier", 
        "givenName": "Yves", 
        "id": "sg:person.01237243565.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237243565.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 de Biologie Int\u00e9grative des Adaptations \u00e0 l\u2019Exercice (INSERM 902\\EA 3872, Genopole), 91000, Evry, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cottin", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.01115211207.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115211207.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Sud Francilien", 
          "id": "https://www.grid.ac/institutes/grid.477082.e", 
          "name": [
            "Intensive Care Unit, Centre Hospitalier Sud-Francilien, 91014, Evry, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van de Louw", 
        "givenName": "Andry", 
        "id": "sg:person.01214123523.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214123523.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.res.33.2.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001623372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2006.03.096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006478940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000539-200104000-00034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007927956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000539-200104000-00034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007927956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.26.5.611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008094273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.00175.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015035309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bspc.2007.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018192594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs1030143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021668438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs1030143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021668438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56225-9_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024612273", 
          "https://doi.org/10.1007/978-3-642-56225-9_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.39.1.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032482199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033321551", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3261-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033321551", 
          "https://doi.org/10.1007/978-1-4757-3261-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3261-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033321551", 
          "https://doi.org/10.1007/978-1-4757-3261-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-008-1292-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034291681", 
          "https://doi.org/10.1007/s00134-008-1292-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-008-1292-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034291681", 
          "https://doi.org/10.1007/s00134-008-1292-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bja/86.4.486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036896351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.84.4.418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038685071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.jvca.2004.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044808895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/cc4970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045335232", 
          "https://doi.org/10.1186/cc4970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160270108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048832044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160270108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048832044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.46.3.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049943355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bja/ael236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052832062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs20010357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056719206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2005.869780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544119jeim315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064454974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544119jeim315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064454974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1953.5.9.495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075401161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4353544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077517778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4353545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077517779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2008.4649422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077838817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1993.74.5.2566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082762471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cic.2005.1588095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094171041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.1998.745928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094694759"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "This study proposes a Semi-Classical Signal Analysis (SCSA) method for stroke volume (SV) variations assessment from arterial blood pressure measurements. One of the SCSA parameters, the first systolic invariant (INVS\u2081), has been shown to be linearly related to SV. To technically validate this approach, the comparison between INVS\u2081 and SV measured with the currently used PiCCO technique was performed during a 15-min recording in 20 mechanically ventilated patients in intensive care. A strong correlation was estimated by linear regression and cross-correlation analysis (mean coefficient = 0.90 \u00b1 0.01 SEM at the two tests).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-010-0118-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Validation of a Semi-Classical Signal Analysis Method for Stroke Volume Variation Assessment: A Comparison with the PiCCO Technique", 
    "pagination": "3618-3629", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10a77130c4f9354f0ef319b0e2e60036ee8578fed157704fe252f677b0cb5cd4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20614241"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-010-0118-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003495683"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-010-0118-z", 
      "https://app.dimensions.ai/details/publication/pub.1003495683"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10439-010-0118-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-010-0118-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-010-0118-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-010-0118-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-010-0118-z'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      72 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-010-0118-z schema:about N2715b7775dbe4270bb41e865fe427dfb
2 N330ac21b47834e2ab8ab3a34d00d20b8
3 N69d9e162b7da4994afe3726716d0e1d9
4 N79f4459c3acb4603bf2b4ab5329918a3
5 N7f515e9afce341ec89794a2cfe40a7f8
6 N8a7c7707211147eda6fc3216a59c27dc
7 N9bdbeadffd244ed7acb9e8c879d966d3
8 Na8004d36e3e443808142807275035c4d
9 Nc7e3fe56431e4a7fa1f187632a86e1c1
10 Ncbbbae060a1d4014bf49fb5d7aed13ea
11 Ndec8307a442a46e8ba27f3899b6d4ed0
12 Ned826d9dd01b464f9e8dd0c06e18e65d
13 Nf6b193acf4bb4bebaa952f252c9dff2b
14 anzsrc-for:11
15 anzsrc-for:1103
16 schema:author N16b14d1748a74213bcaefd3a2c72aa9f
17 schema:citation sg:pub.10.1007/978-1-4757-3261-0
18 sg:pub.10.1007/978-3-642-56225-9_6
19 sg:pub.10.1007/s00134-008-1292-4
20 sg:pub.10.1186/cc4970
21 https://app.dimensions.ai/details/publication/pub.1033321551
22 https://doi.org/10.1002/cpa.3160270108
23 https://doi.org/10.1016/j.bspc.2007.05.004
24 https://doi.org/10.1016/j.chaos.2006.03.096
25 https://doi.org/10.1042/cs1030143
26 https://doi.org/10.1042/cs20010357
27 https://doi.org/10.1053/j.jvca.2004.01.025
28 https://doi.org/10.1093/bja/86.4.486
29 https://doi.org/10.1093/bja/ael236
30 https://doi.org/10.1097/00000539-200104000-00034
31 https://doi.org/10.1109/cic.2005.1588095
32 https://doi.org/10.1109/iembs.1998.745928
33 https://doi.org/10.1109/iembs.2007.4353544
34 https://doi.org/10.1109/iembs.2007.4353545
35 https://doi.org/10.1109/iembs.2008.4649422
36 https://doi.org/10.1109/tbme.2005.869780
37 https://doi.org/10.1152/ajpheart.00175.2002
38 https://doi.org/10.1152/jappl.1953.5.9.495
39 https://doi.org/10.1152/jappl.1993.74.5.2566
40 https://doi.org/10.1161/01.cir.46.3.546
41 https://doi.org/10.1161/01.res.26.5.611
42 https://doi.org/10.1161/01.res.33.2.139
43 https://doi.org/10.1161/01.res.39.1.15
44 https://doi.org/10.1243/09544119jeim315
45 https://doi.org/10.1378/chest.84.4.418
46 https://doi.org/10.2307/1403192
47 schema:datePublished 2010-12
48 schema:datePublishedReg 2010-12-01
49 schema:description This study proposes a Semi-Classical Signal Analysis (SCSA) method for stroke volume (SV) variations assessment from arterial blood pressure measurements. One of the SCSA parameters, the first systolic invariant (INVS₁), has been shown to be linearly related to SV. To technically validate this approach, the comparison between INVS₁ and SV measured with the currently used PiCCO technique was performed during a 15-min recording in 20 mechanically ventilated patients in intensive care. A strong correlation was estimated by linear regression and cross-correlation analysis (mean coefficient = 0.90 ± 0.01 SEM at the two tests).
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N8ef686d4238142959845c7ccd3c6b9c2
54 Nbb6dcc315e0546cbba3b7b9644154cff
55 sg:journal.1087247
56 schema:name Validation of a Semi-Classical Signal Analysis Method for Stroke Volume Variation Assessment: A Comparison with the PiCCO Technique
57 schema:pagination 3618-3629
58 schema:productId N154ba86114d9432e816f4c8740d89ce1
59 N2f544edc89444167accc0be601a367c5
60 Na002df7c17e84c5bb77fd44e4fd48a3c
61 Nc910365944d048d4b538f15f7d05f9cb
62 Nf4b4ecec2ef64e33b1fce4aade5b91a1
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003495683
64 https://doi.org/10.1007/s10439-010-0118-z
65 schema:sdDatePublished 2019-04-11T10:31
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N75837b255b9b48e7bb31dc0a3b5bfed5
68 schema:url http://link.springer.com/10.1007%2Fs10439-010-0118-z
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N154ba86114d9432e816f4c8740d89ce1 schema:name dimensions_id
73 schema:value pub.1003495683
74 rdf:type schema:PropertyValue
75 N16b14d1748a74213bcaefd3a2c72aa9f rdf:first sg:person.01261533745.34
76 rdf:rest Ndd4661fa027e414eaa571e727ae7a007
77 N229fc0e8e3f0487ab83a2da3a8ac7663 schema:name Unité de Biologie Intégrative des Adaptations à l’Exercice (INSERM 902\EA 3872, Genopole), 91000, Evry, France
78 rdf:type schema:Organization
79 N2715b7775dbe4270bb41e865fe427dfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Respiration, Artificial
81 rdf:type schema:DefinedTerm
82 N2d3845a302354ce7b5954bdaad01a5a7 schema:name INRIA Bordeaux Sud-Ouest, UFR Sciences, Bâtiment B1, Université de Pau et des Pays de l’Adour, B.P. 1155, 64013, Pau, France
83 rdf:type schema:Organization
84 N2f544edc89444167accc0be601a367c5 schema:name pubmed_id
85 schema:value 20614241
86 rdf:type schema:PropertyValue
87 N330ac21b47834e2ab8ab3a34d00d20b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Linear Models
89 rdf:type schema:DefinedTerm
90 N69d9e162b7da4994afe3726716d0e1d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Analysis of Variance
92 rdf:type schema:DefinedTerm
93 N75837b255b9b48e7bb31dc0a3b5bfed5 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N79f4459c3acb4603bf2b4ab5329918a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Biomedical Engineering
97 rdf:type schema:DefinedTerm
98 N7daf2c06408f49afa4279898ff6c710e rdf:first sg:person.01214123523.76
99 rdf:rest rdf:nil
100 N7f515e9afce341ec89794a2cfe40a7f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Cardiac Output
102 rdf:type schema:DefinedTerm
103 N858dd4095bcb480c9e64bc22d98ce8d6 rdf:first sg:person.01115211207.67
104 rdf:rest N7daf2c06408f49afa4279898ff6c710e
105 N8a7c7707211147eda6fc3216a59c27dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Signal Processing, Computer-Assisted
107 rdf:type schema:DefinedTerm
108 N8ef686d4238142959845c7ccd3c6b9c2 schema:issueNumber 12
109 rdf:type schema:PublicationIssue
110 N9bdbeadffd244ed7acb9e8c879d966d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Blood Pressure
112 rdf:type schema:DefinedTerm
113 Na002df7c17e84c5bb77fd44e4fd48a3c schema:name doi
114 schema:value 10.1007/s10439-010-0118-z
115 rdf:type schema:PropertyValue
116 Na8004d36e3e443808142807275035c4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Systole
118 rdf:type schema:DefinedTerm
119 Nad37c5786a794afd9f98848117f3d86a rdf:first sg:person.01237243565.99
120 rdf:rest N858dd4095bcb480c9e64bc22d98ce8d6
121 Nb459758210d549978069d30d90428582 schema:name EA 3544 EFM Hôpital Antoine Béclère 92141, Clamart, France
122 rdf:type schema:Organization
123 Nbb6dcc315e0546cbba3b7b9644154cff schema:volumeNumber 38
124 rdf:type schema:PublicationVolume
125 Nc7e3fe56431e4a7fa1f187632a86e1c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Models, Cardiovascular
127 rdf:type schema:DefinedTerm
128 Nc910365944d048d4b538f15f7d05f9cb schema:name nlm_unique_id
129 schema:value 0361512
130 rdf:type schema:PropertyValue
131 Ncbbbae060a1d4014bf49fb5d7aed13ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Humans
133 rdf:type schema:DefinedTerm
134 Ndd4661fa027e414eaa571e727ae7a007 rdf:first sg:person.011763113244.04
135 rdf:rest Nad37c5786a794afd9f98848117f3d86a
136 Ndec8307a442a46e8ba27f3899b6d4ed0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Prospective Studies
138 rdf:type schema:DefinedTerm
139 Ne96c08a0690f4b72ae16c51a1ab3de3f schema:name INRIA-Rocquencourt, B.P. 105, 78153, Le Chesnay cedex, France
140 rdf:type schema:Organization
141 Ned826d9dd01b464f9e8dd0c06e18e65d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Thermodilution
143 rdf:type schema:DefinedTerm
144 Nf4b4ecec2ef64e33b1fce4aade5b91a1 schema:name readcube_id
145 schema:value 10a77130c4f9354f0ef319b0e2e60036ee8578fed157704fe252f677b0cb5cd4
146 rdf:type schema:PropertyValue
147 Nf6b193acf4bb4bebaa952f252c9dff2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Stroke Volume
149 rdf:type schema:DefinedTerm
150 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
151 schema:name Medical and Health Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
154 schema:name Clinical Sciences
155 rdf:type schema:DefinedTerm
156 sg:journal.1087247 schema:issn 0145-3068
157 1573-9686
158 schema:name Annals of Biomedical Engineering
159 rdf:type schema:Periodical
160 sg:person.01115211207.67 schema:affiliation N229fc0e8e3f0487ab83a2da3a8ac7663
161 schema:familyName Cottin
162 schema:givenName François
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115211207.67
164 rdf:type schema:Person
165 sg:person.011763113244.04 schema:affiliation Ne96c08a0690f4b72ae16c51a1ab3de3f
166 schema:familyName Médigue
167 schema:givenName Claire
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763113244.04
169 rdf:type schema:Person
170 sg:person.01214123523.76 schema:affiliation https://www.grid.ac/institutes/grid.477082.e
171 schema:familyName Van de Louw
172 schema:givenName Andry
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214123523.76
174 rdf:type schema:Person
175 sg:person.01237243565.99 schema:affiliation Nb459758210d549978069d30d90428582
176 schema:familyName Papelier
177 schema:givenName Yves
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237243565.99
179 rdf:type schema:Person
180 sg:person.01261533745.34 schema:affiliation N2d3845a302354ce7b5954bdaad01a5a7
181 schema:familyName Laleg-Kirati
182 schema:givenName Taous-Meriem
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261533745.34
184 rdf:type schema:Person
185 sg:pub.10.1007/978-1-4757-3261-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033321551
186 https://doi.org/10.1007/978-1-4757-3261-0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/978-3-642-56225-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024612273
189 https://doi.org/10.1007/978-3-642-56225-9_6
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s00134-008-1292-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034291681
192 https://doi.org/10.1007/s00134-008-1292-4
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/cc4970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045335232
195 https://doi.org/10.1186/cc4970
196 rdf:type schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1033321551 schema:CreativeWork
198 https://doi.org/10.1002/cpa.3160270108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048832044
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.bspc.2007.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018192594
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.chaos.2006.03.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006478940
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1042/cs1030143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021668438
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1042/cs20010357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056719206
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1053/j.jvca.2004.01.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044808895
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/bja/86.4.486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036896351
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/bja/ael236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052832062
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1097/00000539-200104000-00034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007927956
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/cic.2005.1588095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094171041
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1109/iembs.1998.745928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094694759
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/iembs.2007.4353544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077517778
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/iembs.2007.4353545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077517779
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/iembs.2008.4649422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077838817
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1109/tbme.2005.869780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526586
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1152/ajpheart.00175.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015035309
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1152/jappl.1953.5.9.495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075401161
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1152/jappl.1993.74.5.2566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082762471
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1161/01.cir.46.3.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049943355
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1161/01.res.26.5.611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008094273
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1161/01.res.33.2.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001623372
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1161/01.res.39.1.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032482199
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1243/09544119jeim315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064454974
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1378/chest.84.4.418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038685071
245 rdf:type schema:CreativeWork
246 https://doi.org/10.2307/1403192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473555
247 rdf:type schema:CreativeWork
248 https://www.grid.ac/institutes/grid.477082.e schema:alternateName Centre Hospitalier Sud Francilien
249 schema:name Intensive Care Unit, Centre Hospitalier Sud-Francilien, 91014, Evry, France
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...