Novel Approach of Predicting Fracture Load in the Human Proximal Femur Using Non-Invasive QCT Imaging Technique View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-05

AUTHORS

Taeyong Lee, Barry P. Pereira, Yoon-Sok Chung, Han Jin Oh, Jae Bong Choi, Dohyung Lim, Jun Hwan Shin

ABSTRACT

This paper presents an analysis of predicting the load-bearing capacities of human femurs using quantitative computer tomography (QCT)-based beam theory. Cross-sectional images of 12 human cadaver femurs (intact bones, age: 39-77 years; male = 8, female = 4) were scanned in conjunction with a calcium hydroxyapatite phantom which has five chambers of known densities. The apparent densities obtained from the scans were used to evaluate the Young's modulus (E) by applying the established empirical relationships. The fracture load of a configuration that simulated single-legged stance was measured experimentally and compared with the predicted failure load using a composite beam theory, plane stress model of the femur. In this model, the failure was assumed to occur at the weakest cross-section through the bone determined from QCT-based structural analysis. In contrast to the other experimental investigations, the setup used in this study considers the entire length of a human femur and also incorporates a novel mechanical jig to mimic the realistic physiological scenario. In one of our earlier studies, simulated lytic defects of varying size were created at the inter-trochanteric region of femurs and their load-bearing capacities were calculated based on their structural properties. Both the results obtained from the current study as well as the ones from our previous study were used to assess the viability of the methodology. A high degree of correlation was observed when the predicted failure loads obtained from the intact femurs and previously studied defective femurs were compared with the ex vivo fracture loads. The coefficients of determination (R(2)) of QCT-derived predicted loads with respect to the measured failure loads were 0.80 for the intact femurs and 0.87 for the defective femurs. The results suggest that the QCT-derived beam analysis provides a viable approach for the assessment of load-bearing capacity in various clinical scenarios. More... »

PAGES

966-975

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-009-9670-9

DOI

http://dx.doi.org/10.1007/s10439-009-9670-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030917286

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19288197


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cadaver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Femoral Neck Fractures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Femur", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Mechanical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tensile Strength", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Weight-Bearing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Division of Bioengineering, National University of Singapore, Block E1, #08-03, 9 Engineering Drive 1, 117576, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Taeyong", 
        "id": "sg:person.01073753306.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073753306.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pereira", 
        "givenName": "Barry P.", 
        "id": "sg:person.01104037703.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104037703.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Endocrinology & Metabolism, Ajou University School of Medicine, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Yoon-Sok", 
        "id": "sg:person.01104153443.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104153443.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kwandong University", 
          "id": "https://www.grid.ac/institutes/grid.411199.5", 
          "name": [
            "Department of Family Medicine, Kwandong University, Gangwon-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Han Jin", 
        "id": "sg:person.0760365075.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760365075.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hansung University", 
          "id": "https://www.grid.ac/institutes/grid.444079.a", 
          "name": [
            "Department of Mechanical Systems Engineering, Hansung University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Jae Bong", 
        "id": "sg:person.015474055647.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015474055647.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Industrial Technology", 
          "id": "https://www.grid.ac/institutes/grid.454135.2", 
          "name": [
            "Silver Technology Center, Korea Institute of Industrial Technology, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Dohyung", 
        "id": "sg:person.0604460031.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604460031.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Overseas Family School, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Jun Hwan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/1097-0142(1971)28:5<1350::aid-cncr2820280539>3.0.co;2-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001450009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9751-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005131333", 
          "https://doi.org/10.1007/s10439-009-9751-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9751-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005131333", 
          "https://doi.org/10.1007/s10439-009-9751-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9751-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005131333", 
          "https://doi.org/10.1007/s10439-009-9751-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(88)90008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011397653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(94)90053-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015769751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jor.1100100314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018093430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jor.1100100314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018093430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00774-006-0715-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020038735", 
          "https://doi.org/10.1007/s00774-006-0715-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00774-006-0715-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020038735", 
          "https://doi.org/10.1007/s00774-006-0715-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jor.1100090315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025473713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00223-008-9158-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025843828", 
          "https://doi.org/10.1007/s00223-008-9158-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00223-008-9158-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025843828", 
          "https://doi.org/10.1007/s00223-008-9158-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/17453678108992157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027195993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.blo.0000164400.37905.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030350132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.blo.0000164400.37905.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030350132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002560050480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034304156", 
          "https://doi.org/10.1007/s002560050480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(19861215)58:12<2589::aid-cncr2820581206>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034481127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orthres.2003.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036395499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-003-1556-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048189559", 
          "https://doi.org/10.1007/s00198-003-1556-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-006-9237-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048377175", 
          "https://doi.org/10.1007/s10439-006-9237-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-006-9237-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048377175", 
          "https://doi.org/10.1007/s10439-006-9237-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1350-4533(03)00030-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049140539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1350-4533(03)00030-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049140539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bone.2006.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052201316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198206000-00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060159823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198206000-00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060159823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198206000-00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060159823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198209000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060159938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198209000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060159938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198209000-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060159938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198602000-00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060161497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198602000-00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060161497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-198602000-00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060161497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2106/00004623-197860050-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068886858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2106/00004623-200009000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068893943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/17453678809169697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070988195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077052530", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077052536", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082443621", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1302/0301-620x.78b3.0780363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082888018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083149096", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "This paper presents an analysis of predicting the load-bearing capacities of human femurs using quantitative computer tomography (QCT)-based beam theory. Cross-sectional images of 12 human cadaver femurs (intact bones, age: 39-77 years; male = 8, female = 4) were scanned in conjunction with a calcium hydroxyapatite phantom which has five chambers of known densities. The apparent densities obtained from the scans were used to evaluate the Young's modulus (E) by applying the established empirical relationships. The fracture load of a configuration that simulated single-legged stance was measured experimentally and compared with the predicted failure load using a composite beam theory, plane stress model of the femur. In this model, the failure was assumed to occur at the weakest cross-section through the bone determined from QCT-based structural analysis. In contrast to the other experimental investigations, the setup used in this study considers the entire length of a human femur and also incorporates a novel mechanical jig to mimic the realistic physiological scenario. In one of our earlier studies, simulated lytic defects of varying size were created at the inter-trochanteric region of femurs and their load-bearing capacities were calculated based on their structural properties. Both the results obtained from the current study as well as the ones from our previous study were used to assess the viability of the methodology. A high degree of correlation was observed when the predicted failure loads obtained from the intact femurs and previously studied defective femurs were compared with the ex vivo fracture loads. The coefficients of determination (R(2)) of QCT-derived predicted loads with respect to the measured failure loads were 0.80 for the intact femurs and 0.87 for the defective femurs. The results suggest that the QCT-derived beam analysis provides a viable approach for the assessment of load-bearing capacity in various clinical scenarios.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-009-9670-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Novel Approach of Predicting Fracture Load in the Human Proximal Femur Using Non-Invasive QCT Imaging Technique", 
    "pagination": "966-975", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "934970328fdffebeb9645cec534babf935ac94511780938c8e2667a829370646"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19288197"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-009-9670-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030917286"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-009-9670-9", 
      "https://app.dimensions.ai/details/publication/pub.1030917286"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13069_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10439-009-9670-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-009-9670-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-009-9670-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-009-9670-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-009-9670-9'


 

This table displays all metadata directly associated to this object as RDF triples.

283 TRIPLES      21 PREDICATES      75 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-009-9670-9 schema:about N01165737aa444acdbb314a76513f3c49
2 N0824dc94c08549dcb366930985409617
3 N13488a559df744fd805e27def315060f
4 N3fad66042eb846abafb54c089bfd3065
5 N408c418a83c54c4e844f3f2bcfd29cbb
6 N454f5104ef194c0182881c82488002dd
7 N5e0c1a71247a418694b52f2620d4a50a
8 N635ae1054e8147fbbe50bdc34d33d767
9 N720bb5a918f6467499da3166284c6e4e
10 N7a8a1eb4c26d443f9f61cae009878f61
11 N826016271e794b628f6dd9a4f2d9ca24
12 N855d51b18d1d40339ea8319b2577f010
13 N9b8afd1394c347b7a119caca27e656b2
14 Na7f7bd87b6db4977acc180407d55342c
15 Nbafc4967924d4a66a59151ae566b8e3f
16 Ne01e7cf58d3c4be2af7685e65f181be1
17 Ne3eb645291714bac87b4bc484eacaebe
18 Ned7bbdab138b4b06b565249c6d6c66ca
19 anzsrc-for:11
20 anzsrc-for:1103
21 schema:author N79809a65ebe04d59ac8c128eda46232b
22 schema:citation sg:pub.10.1007/s00198-003-1556-3
23 sg:pub.10.1007/s00223-008-9158-x
24 sg:pub.10.1007/s002560050480
25 sg:pub.10.1007/s00774-006-0715-y
26 sg:pub.10.1007/s10439-006-9237-y
27 sg:pub.10.1007/s10439-009-9751-9
28 https://app.dimensions.ai/details/publication/pub.1077052530
29 https://app.dimensions.ai/details/publication/pub.1077052536
30 https://app.dimensions.ai/details/publication/pub.1082443621
31 https://app.dimensions.ai/details/publication/pub.1083149096
32 https://doi.org/10.1002/1097-0142(1971)28:5<1350::aid-cncr2820280539>3.0.co;2-6
33 https://doi.org/10.1002/1097-0142(19861215)58:12<2589::aid-cncr2820581206>3.0.co;2-o
34 https://doi.org/10.1002/jor.1100090315
35 https://doi.org/10.1002/jor.1100100314
36 https://doi.org/10.1016/0021-9290(88)90008-5
37 https://doi.org/10.1016/0021-9290(94)90053-1
38 https://doi.org/10.1016/j.bone.2006.09.017
39 https://doi.org/10.1016/j.orthres.2003.09.006
40 https://doi.org/10.1016/s1350-4533(03)00030-4
41 https://doi.org/10.1097/00003086-198206000-00036
42 https://doi.org/10.1097/00003086-198209000-00010
43 https://doi.org/10.1097/00003086-198602000-00036
44 https://doi.org/10.1097/01.blo.0000164400.37905.22
45 https://doi.org/10.1302/0301-620x.78b3.0780363
46 https://doi.org/10.2106/00004623-197860050-00014
47 https://doi.org/10.2106/00004623-200009000-00004
48 https://doi.org/10.3109/17453678108992157
49 https://doi.org/10.3109/17453678809169697
50 schema:datePublished 2009-05
51 schema:datePublishedReg 2009-05-01
52 schema:description This paper presents an analysis of predicting the load-bearing capacities of human femurs using quantitative computer tomography (QCT)-based beam theory. Cross-sectional images of 12 human cadaver femurs (intact bones, age: 39-77 years; male = 8, female = 4) were scanned in conjunction with a calcium hydroxyapatite phantom which has five chambers of known densities. The apparent densities obtained from the scans were used to evaluate the Young's modulus (E) by applying the established empirical relationships. The fracture load of a configuration that simulated single-legged stance was measured experimentally and compared with the predicted failure load using a composite beam theory, plane stress model of the femur. In this model, the failure was assumed to occur at the weakest cross-section through the bone determined from QCT-based structural analysis. In contrast to the other experimental investigations, the setup used in this study considers the entire length of a human femur and also incorporates a novel mechanical jig to mimic the realistic physiological scenario. In one of our earlier studies, simulated lytic defects of varying size were created at the inter-trochanteric region of femurs and their load-bearing capacities were calculated based on their structural properties. Both the results obtained from the current study as well as the ones from our previous study were used to assess the viability of the methodology. A high degree of correlation was observed when the predicted failure loads obtained from the intact femurs and previously studied defective femurs were compared with the ex vivo fracture loads. The coefficients of determination (R(2)) of QCT-derived predicted loads with respect to the measured failure loads were 0.80 for the intact femurs and 0.87 for the defective femurs. The results suggest that the QCT-derived beam analysis provides a viable approach for the assessment of load-bearing capacity in various clinical scenarios.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N0ac255561dbd4ea9b84d2e69c2f9b124
57 N6b5dfd29e20941c2812bcbb939e0a808
58 sg:journal.1087247
59 schema:name Novel Approach of Predicting Fracture Load in the Human Proximal Femur Using Non-Invasive QCT Imaging Technique
60 schema:pagination 966-975
61 schema:productId N056dad5c0aac47acb8f0be0d48218485
62 N49fc97e231314abf85066cdf5ba5cf64
63 N686c440628474ef894e0ca5f2774994d
64 Nb20a54cf610d45819bf519934e581a7c
65 Nf406b54ac9e7461b86bbefe94df4323a
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030917286
67 https://doi.org/10.1007/s10439-009-9670-9
68 schema:sdDatePublished 2019-04-11T14:26
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N420b000ecd6a4ce89259c539e0810307
71 schema:url http://link.springer.com/10.1007%2Fs10439-009-9670-9
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N01165737aa444acdbb314a76513f3c49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Stress, Mechanical
77 rdf:type schema:DefinedTerm
78 N050d0e565b5a40a9b5aa07b2b57dd1f0 rdf:first sg:person.0604460031.57
79 rdf:rest N8d9a99dc3df343a1b9dc6e3510d87da0
80 N056dad5c0aac47acb8f0be0d48218485 schema:name doi
81 schema:value 10.1007/s10439-009-9670-9
82 rdf:type schema:PropertyValue
83 N0824dc94c08549dcb366930985409617 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Female
85 rdf:type schema:DefinedTerm
86 N0ac255561dbd4ea9b84d2e69c2f9b124 schema:volumeNumber 37
87 rdf:type schema:PublicationVolume
88 N13488a559df744fd805e27def315060f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Adult
90 rdf:type schema:DefinedTerm
91 N22133de981f745d4a398508f72540d83 rdf:first sg:person.0760365075.71
92 rdf:rest Nd00fe5c5a3e74ff78cbaeb20428279c5
93 N3fad66042eb846abafb54c089bfd3065 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Elasticity
95 rdf:type schema:DefinedTerm
96 N408c418a83c54c4e844f3f2bcfd29cbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Linear Models
98 rdf:type schema:DefinedTerm
99 N420b000ecd6a4ce89259c539e0810307 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N454f5104ef194c0182881c82488002dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Cadaver
103 rdf:type schema:DefinedTerm
104 N49fc97e231314abf85066cdf5ba5cf64 schema:name readcube_id
105 schema:value 934970328fdffebeb9645cec534babf935ac94511780938c8e2667a829370646
106 rdf:type schema:PropertyValue
107 N58a1f1c175164c648edfce95f8ee8607 rdf:first sg:person.01104153443.15
108 rdf:rest N22133de981f745d4a398508f72540d83
109 N5e0c1a71247a418694b52f2620d4a50a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Femur
111 rdf:type schema:DefinedTerm
112 N635ae1054e8147fbbe50bdc34d33d767 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Middle Aged
114 rdf:type schema:DefinedTerm
115 N686c440628474ef894e0ca5f2774994d schema:name nlm_unique_id
116 schema:value 0361512
117 rdf:type schema:PropertyValue
118 N6b5dfd29e20941c2812bcbb939e0a808 schema:issueNumber 5
119 rdf:type schema:PublicationIssue
120 N720bb5a918f6467499da3166284c6e4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 N79809a65ebe04d59ac8c128eda46232b rdf:first sg:person.01073753306.40
124 rdf:rest Nf732e4561ea64db2b6c1e3d3b81af5e5
125 N7a8a1eb4c26d443f9f61cae009878f61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Models, Biological
127 rdf:type schema:DefinedTerm
128 N826016271e794b628f6dd9a4f2d9ca24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Aged
130 rdf:type schema:DefinedTerm
131 N855d51b18d1d40339ea8319b2577f010 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Weight-Bearing
133 rdf:type schema:DefinedTerm
134 N8d9a99dc3df343a1b9dc6e3510d87da0 rdf:first N92e03d059276480a88d75c9d6d22bf9c
135 rdf:rest rdf:nil
136 N92e03d059276480a88d75c9d6d22bf9c schema:affiliation Nf2ccd387ba1f4d7584dc13ce401a88d1
137 schema:familyName Shin
138 schema:givenName Jun Hwan
139 rdf:type schema:Person
140 N9b8afd1394c347b7a119caca27e656b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Tomography, X-Ray Computed
142 rdf:type schema:DefinedTerm
143 Na7f7bd87b6db4977acc180407d55342c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Radiographic Image Enhancement
145 rdf:type schema:DefinedTerm
146 Nb20a54cf610d45819bf519934e581a7c schema:name pubmed_id
147 schema:value 19288197
148 rdf:type schema:PropertyValue
149 Nbafc4967924d4a66a59151ae566b8e3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Male
151 rdf:type schema:DefinedTerm
152 Nd00fe5c5a3e74ff78cbaeb20428279c5 rdf:first sg:person.015474055647.08
153 rdf:rest N050d0e565b5a40a9b5aa07b2b57dd1f0
154 Ne01e7cf58d3c4be2af7685e65f181be1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Aging
156 rdf:type schema:DefinedTerm
157 Ne3eb645291714bac87b4bc484eacaebe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Femoral Neck Fractures
159 rdf:type schema:DefinedTerm
160 Ned7bbdab138b4b06b565249c6d6c66ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Tensile Strength
162 rdf:type schema:DefinedTerm
163 Nf2ccd387ba1f4d7584dc13ce401a88d1 schema:name Overseas Family School, Singapore, Singapore
164 rdf:type schema:Organization
165 Nf406b54ac9e7461b86bbefe94df4323a schema:name dimensions_id
166 schema:value pub.1030917286
167 rdf:type schema:PropertyValue
168 Nf732e4561ea64db2b6c1e3d3b81af5e5 rdf:first sg:person.01104037703.96
169 rdf:rest N58a1f1c175164c648edfce95f8ee8607
170 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
171 schema:name Medical and Health Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
174 schema:name Clinical Sciences
175 rdf:type schema:DefinedTerm
176 sg:journal.1087247 schema:issn 0145-3068
177 1573-9686
178 schema:name Annals of Biomedical Engineering
179 rdf:type schema:Periodical
180 sg:person.01073753306.40 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
181 schema:familyName Lee
182 schema:givenName Taeyong
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073753306.40
184 rdf:type schema:Person
185 sg:person.01104037703.96 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
186 schema:familyName Pereira
187 schema:givenName Barry P.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104037703.96
189 rdf:type schema:Person
190 sg:person.01104153443.15 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
191 schema:familyName Chung
192 schema:givenName Yoon-Sok
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104153443.15
194 rdf:type schema:Person
195 sg:person.015474055647.08 schema:affiliation https://www.grid.ac/institutes/grid.444079.a
196 schema:familyName Choi
197 schema:givenName Jae Bong
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015474055647.08
199 rdf:type schema:Person
200 sg:person.0604460031.57 schema:affiliation https://www.grid.ac/institutes/grid.454135.2
201 schema:familyName Lim
202 schema:givenName Dohyung
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604460031.57
204 rdf:type schema:Person
205 sg:person.0760365075.71 schema:affiliation https://www.grid.ac/institutes/grid.411199.5
206 schema:familyName Oh
207 schema:givenName Han Jin
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760365075.71
209 rdf:type schema:Person
210 sg:pub.10.1007/s00198-003-1556-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048189559
211 https://doi.org/10.1007/s00198-003-1556-3
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s00223-008-9158-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025843828
214 https://doi.org/10.1007/s00223-008-9158-x
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s002560050480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034304156
217 https://doi.org/10.1007/s002560050480
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s00774-006-0715-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020038735
220 https://doi.org/10.1007/s00774-006-0715-y
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s10439-006-9237-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048377175
223 https://doi.org/10.1007/s10439-006-9237-y
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s10439-009-9751-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005131333
226 https://doi.org/10.1007/s10439-009-9751-9
227 rdf:type schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1077052530 schema:CreativeWork
229 https://app.dimensions.ai/details/publication/pub.1077052536 schema:CreativeWork
230 https://app.dimensions.ai/details/publication/pub.1082443621 schema:CreativeWork
231 https://app.dimensions.ai/details/publication/pub.1083149096 schema:CreativeWork
232 https://doi.org/10.1002/1097-0142(1971)28:5<1350::aid-cncr2820280539>3.0.co;2-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001450009
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/1097-0142(19861215)58:12<2589::aid-cncr2820581206>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1034481127
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1002/jor.1100090315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025473713
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1002/jor.1100100314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018093430
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/0021-9290(88)90008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011397653
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/0021-9290(94)90053-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015769751
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.bone.2006.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052201316
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.orthres.2003.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036395499
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/s1350-4533(03)00030-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049140539
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1097/00003086-198206000-00036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060159823
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1097/00003086-198209000-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060159938
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1097/00003086-198602000-00036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060161497
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1097/01.blo.0000164400.37905.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030350132
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1302/0301-620x.78b3.0780363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082888018
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2106/00004623-197860050-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068886858
261 rdf:type schema:CreativeWork
262 https://doi.org/10.2106/00004623-200009000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068893943
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3109/17453678108992157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027195993
265 rdf:type schema:CreativeWork
266 https://doi.org/10.3109/17453678809169697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070988195
267 rdf:type schema:CreativeWork
268 https://www.grid.ac/institutes/grid.251916.8 schema:alternateName Ajou University
269 schema:name Department of Endocrinology & Metabolism, Ajou University School of Medicine, Suwon, Korea
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.411199.5 schema:alternateName Kwandong University
272 schema:name Department of Family Medicine, Kwandong University, Gangwon-do, Korea
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
275 schema:name Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
276 Division of Bioengineering, National University of Singapore, Block E1, #08-03, 9 Engineering Drive 1, 117576, Singapore, Singapore
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.444079.a schema:alternateName Hansung University
279 schema:name Department of Mechanical Systems Engineering, Hansung University, Seoul, Korea
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.454135.2 schema:alternateName Korea Institute of Industrial Technology
282 schema:name Silver Technology Center, Korea Institute of Industrial Technology, Seoul, Korea
283 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...