Contributions of the Active and Passive Components of the Cytoskeletal Prestress to Stiffening of Airway Smooth Muscle Cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-02

AUTHORS

Noah Rosenblatt, Shaohua Hu, Béla Suki, Ning Wang, Dimitrije Stamenović

ABSTRACT

Airway smooth muscle cells exhibit stiffening during contractile activation. This stiffening may be interpreted as a result of the stabilizing influence of the mechanical prestress stored within the cytoskeleton (CSK). However, in vivo, airway smooth muscle cells contract while simultaneously experiencing breathing-induced stretching. Excessive stretching of cells could cause actin-myosin crosslinks, and possibly other cytoskeletal filaments, to break, thereby leading to dissipation of the prestress and inhibition of further cell stiffening. The aim of this study is to investigate the stiffening behavior of individual human airway smooth muscle (HASM) cells exposed to a combination of substrate stretching, contractile activation and relaxation. We treated cultured HASM cells with either contractile (histamine) or relaxing (DBcAMP) pharmacological agonists and used magnetic cytometry technique to investigate the stiffening behavior of these cells during uniform substrate stretching (0-30%). Cells that were not treated, as well as those treated with histamine, exhibited increasing stiffening during stretching up to 20% of substrate strain, with additional stiffening becoming inhibited for substrate strains of 20-30%. In contrast, in cells treated with DBcAMP, stretching produced moderate but continuous stiffening with increasing substrate strain. These results indicate that both active and passive components of the prestress contribute to cell stiffening. We also observed that cells permeabilized with saponin exhibited stiffening at low levels (<10%) of substrate stretching, similar to non-permeabilized cells, but not at high levels (10-30%) of stretching, where stiffening was inhibited. These data suggest that at low levels of substrate strains the relative contributions of ion channel activation as well as actin and focal adhesion remodeling are less important for stiffening than passive distension of the CSK. Taken together, our results suggest that both the active and passive components of the cytoskeletal prestress contribute to the stiffening behavior of HASM cells under physiological conditions, but that at high levels of cellular distensions there is a possible tradeoff between these two components with the contribution from the passive component becoming increasingly more important. More... »

PAGES

224-234

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-006-9228-z

DOI

http://dx.doi.org/10.1007/s10439-006-9228-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046489402

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17151921


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytoskeleton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Larynx", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mechanotransduction, Cellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocytes, Smooth Muscle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Mechanical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 44 Cummington St., 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosenblatt", 
        "givenName": "Noah", 
        "id": "sg:person.01236156623.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236156623.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Physiology Program, Department of Environmental Health, Harvard School of Public Health, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Shaohua", 
        "id": "sg:person.01075261633.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075261633.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 44 Cummington St., 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suki", 
        "givenName": "B\u00e9la", 
        "id": "sg:person.0730323706.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ning", 
        "id": "sg:person.01234670767.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234670767.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Biomedical Engineering, Boston University, 44 Cummington St., 02215, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stamenovi\u0107", 
        "givenName": "Dimitrije", 
        "id": "sg:person.01010055067.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010055067.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1164/ajrccm.156.6.9611016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000343378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.104.046649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002573175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-7793.1999.0829n.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009080080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00269.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013155232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2004.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013967255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00374.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018553434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00425.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019750647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cm.20130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022516661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025381030", 
          "https://doi.org/10.1038/nmat1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025381030", 
          "https://doi.org/10.1038/nmat1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-291x(03)01165-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025895780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-291x(03)01165-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025895780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplung.00299.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026657999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.200204153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028414527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80856-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032412968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.141199598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035375454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2005.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041785881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.00359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043803465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1114/1.1616932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046303847", 
          "https://doi.org/10.1114/1.1616932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplung.00077.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048830448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)81014-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051525693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00255.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052911988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.041914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.041914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.148102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.148102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajplung.1999.277.3.l653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074520401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.2000.89.5.2085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074719389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.2001.91.2.986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074850672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.2001.281.5.c1468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074893617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076723778", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1989.67.6.2408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079102854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1989.256.2.c329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079163375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1996.271.5.c1660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083008651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1996.81.6.2703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083040387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1998.274.5.c1283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083272051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1998.274.5.c1283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083272051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1999.276.1.c250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083373858"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-02", 
    "datePublishedReg": "2007-02-01", 
    "description": "Airway smooth muscle cells exhibit stiffening during contractile activation. This stiffening may be interpreted as a result of the stabilizing influence of the mechanical prestress stored within the cytoskeleton (CSK). However, in vivo, airway smooth muscle cells contract while simultaneously experiencing breathing-induced stretching. Excessive stretching of cells could cause actin-myosin crosslinks, and possibly other cytoskeletal filaments, to break, thereby leading to dissipation of the prestress and inhibition of further cell stiffening. The aim of this study is to investigate the stiffening behavior of individual human airway smooth muscle (HASM) cells exposed to a combination of substrate stretching, contractile activation and relaxation. We treated cultured HASM cells with either contractile (histamine) or relaxing (DBcAMP) pharmacological agonists and used magnetic cytometry technique to investigate the stiffening behavior of these cells during uniform substrate stretching (0-30%). Cells that were not treated, as well as those treated with histamine, exhibited increasing stiffening during stretching up to 20% of substrate strain, with additional stiffening becoming inhibited for substrate strains of 20-30%. In contrast, in cells treated with DBcAMP, stretching produced moderate but continuous stiffening with increasing substrate strain. These results indicate that both active and passive components of the prestress contribute to cell stiffening. We also observed that cells permeabilized with saponin exhibited stiffening at low levels (<10%) of substrate stretching, similar to non-permeabilized cells, but not at high levels (10-30%) of stretching, where stiffening was inhibited. These data suggest that at low levels of substrate strains the relative contributions of ion channel activation as well as actin and focal adhesion remodeling are less important for stiffening than passive distension of the CSK. Taken together, our results suggest that both the active and passive components of the cytoskeletal prestress contribute to the stiffening behavior of HASM cells under physiological conditions, but that at high levels of cellular distensions there is a possible tradeoff between these two components with the contribution from the passive component becoming increasingly more important.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-006-9228-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2518609", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2436783", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Contributions of the Active and Passive Components of the Cytoskeletal Prestress to Stiffening of Airway Smooth Muscle Cells", 
    "pagination": "224-234", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd75409d5276d81a053b3856041cfe19d5a79c365130155ba11910eaa1a3d36b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17151921"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-006-9228-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046489402"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-006-9228-z", 
      "https://app.dimensions.ai/details/publication/pub.1046489402"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13071_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10439-006-9228-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-006-9228-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-006-9228-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-006-9228-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-006-9228-z'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      72 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-006-9228-z schema:about N03aa30cf0aa942d7aaeb19adfbcd427e
2 N13329c1efda442c5812f4954174bbd4d
3 N1bf6596251b9448a8a9f54371e3dcafc
4 N306caefae9e84c84bfa012cfe2d65a6b
5 N3b8502e6d61942a39dd13caf2ca2d34e
6 N4f4ede2618204a70baa8dfb928efcd1c
7 N617286f87ec0450382bf63a42f866c3d
8 N83e1bb13176f46ceb24b9792b9670db8
9 Nb9bc3f3a16264e7ab3dc4d0ae2e14a02
10 Ne552cc64abd34eb0a9a5e33b8c26ea0c
11 anzsrc-for:11
12 anzsrc-for:1102
13 schema:author N824266ec5f844acd959e25e83b2ed575
14 schema:citation sg:pub.10.1038/nmat1404
15 sg:pub.10.1114/1.1616932
16 https://app.dimensions.ai/details/publication/pub.1076723778
17 https://doi.org/10.1002/cm.20130
18 https://doi.org/10.1016/j.actbio.2005.01.004
19 https://doi.org/10.1016/j.bbrc.2004.07.011
20 https://doi.org/10.1016/s0006-291x(03)01165-3
21 https://doi.org/10.1016/s0006-3495(94)80856-2
22 https://doi.org/10.1016/s0006-3495(94)81014-8
23 https://doi.org/10.1073/pnas.141199598
24 https://doi.org/10.1083/jcb.200204153
25 https://doi.org/10.1103/physreve.68.041914
26 https://doi.org/10.1103/physrevlett.87.148102
27 https://doi.org/10.1111/j.1469-7793.1999.0829n.x
28 https://doi.org/10.1152/ajpcell.00269.2001
29 https://doi.org/10.1152/ajpcell.00374.2003
30 https://doi.org/10.1152/ajpcell.00425.2001
31 https://doi.org/10.1152/ajpcell.1989.256.2.c329
32 https://doi.org/10.1152/ajpcell.1996.271.5.c1660
33 https://doi.org/10.1152/ajpcell.1998.274.5.c1283
34 https://doi.org/10.1152/ajpcell.1999.276.1.c250
35 https://doi.org/10.1152/ajpcell.2001.281.5.c1468
36 https://doi.org/10.1152/ajplung.00077.2004
37 https://doi.org/10.1152/ajplung.00299.2005
38 https://doi.org/10.1152/ajplung.1999.277.3.l653
39 https://doi.org/10.1152/jappl.1989.67.6.2408
40 https://doi.org/10.1152/jappl.1996.81.6.2703
41 https://doi.org/10.1152/jappl.2000.89.5.2085
42 https://doi.org/10.1152/jappl.2001.91.2.986
43 https://doi.org/10.1152/japplphysiol.00255.2002
44 https://doi.org/10.1164/ajrccm.156.6.9611016
45 https://doi.org/10.1242/jcs.00359
46 https://doi.org/10.1529/biophysj.104.046649
47 schema:datePublished 2007-02
48 schema:datePublishedReg 2007-02-01
49 schema:description Airway smooth muscle cells exhibit stiffening during contractile activation. This stiffening may be interpreted as a result of the stabilizing influence of the mechanical prestress stored within the cytoskeleton (CSK). However, in vivo, airway smooth muscle cells contract while simultaneously experiencing breathing-induced stretching. Excessive stretching of cells could cause actin-myosin crosslinks, and possibly other cytoskeletal filaments, to break, thereby leading to dissipation of the prestress and inhibition of further cell stiffening. The aim of this study is to investigate the stiffening behavior of individual human airway smooth muscle (HASM) cells exposed to a combination of substrate stretching, contractile activation and relaxation. We treated cultured HASM cells with either contractile (histamine) or relaxing (DBcAMP) pharmacological agonists and used magnetic cytometry technique to investigate the stiffening behavior of these cells during uniform substrate stretching (0-30%). Cells that were not treated, as well as those treated with histamine, exhibited increasing stiffening during stretching up to 20% of substrate strain, with additional stiffening becoming inhibited for substrate strains of 20-30%. In contrast, in cells treated with DBcAMP, stretching produced moderate but continuous stiffening with increasing substrate strain. These results indicate that both active and passive components of the prestress contribute to cell stiffening. We also observed that cells permeabilized with saponin exhibited stiffening at low levels (<10%) of substrate stretching, similar to non-permeabilized cells, but not at high levels (10-30%) of stretching, where stiffening was inhibited. These data suggest that at low levels of substrate strains the relative contributions of ion channel activation as well as actin and focal adhesion remodeling are less important for stiffening than passive distension of the CSK. Taken together, our results suggest that both the active and passive components of the cytoskeletal prestress contribute to the stiffening behavior of HASM cells under physiological conditions, but that at high levels of cellular distensions there is a possible tradeoff between these two components with the contribution from the passive component becoming increasingly more important.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N61fa0b037cbe4692be046f7dae06d0fe
54 N7040d2517169471da8b14a2fe4f372b8
55 sg:journal.1087247
56 schema:name Contributions of the Active and Passive Components of the Cytoskeletal Prestress to Stiffening of Airway Smooth Muscle Cells
57 schema:pagination 224-234
58 schema:productId N15bcf96fdabc44d88cd2a0a8d5db57ce
59 N208e2fb67dcd4bc594b6cc9151f265af
60 N31958429bd9d4b14ad1f473c110f5585
61 N6928bda4fdf24b29875906994ebe876b
62 Ne1a89ce1bc324f95880a7ff509cd47ea
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046489402
64 https://doi.org/10.1007/s10439-006-9228-z
65 schema:sdDatePublished 2019-04-11T14:26
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N2c8be06b64f64c36bbd27493defe3ced
68 schema:url http://link.springer.com/10.1007%2Fs10439-006-9228-z
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N03aa30cf0aa942d7aaeb19adfbcd427e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Models, Biological
74 rdf:type schema:DefinedTerm
75 N13329c1efda442c5812f4954174bbd4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Computer Simulation
77 rdf:type schema:DefinedTerm
78 N15bcf96fdabc44d88cd2a0a8d5db57ce schema:name readcube_id
79 schema:value dd75409d5276d81a053b3856041cfe19d5a79c365130155ba11910eaa1a3d36b
80 rdf:type schema:PropertyValue
81 N1bf6596251b9448a8a9f54371e3dcafc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Humans
83 rdf:type schema:DefinedTerm
84 N208e2fb67dcd4bc594b6cc9151f265af schema:name nlm_unique_id
85 schema:value 0361512
86 rdf:type schema:PropertyValue
87 N2a29c3dd2a484dcda299ed0be7c3dc2a rdf:first sg:person.01234670767.48
88 rdf:rest N54a146caa4ef4517849d3dc241b008f6
89 N2c8be06b64f64c36bbd27493defe3ced schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N306caefae9e84c84bfa012cfe2d65a6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Mechanotransduction, Cellular
93 rdf:type schema:DefinedTerm
94 N31958429bd9d4b14ad1f473c110f5585 schema:name pubmed_id
95 schema:value 17151921
96 rdf:type schema:PropertyValue
97 N3b8502e6d61942a39dd13caf2ca2d34e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Cytoskeleton
99 rdf:type schema:DefinedTerm
100 N4f4ede2618204a70baa8dfb928efcd1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Cells, Cultured
102 rdf:type schema:DefinedTerm
103 N54a146caa4ef4517849d3dc241b008f6 rdf:first sg:person.01010055067.53
104 rdf:rest rdf:nil
105 N617286f87ec0450382bf63a42f866c3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Myocytes, Smooth Muscle
107 rdf:type schema:DefinedTerm
108 N61fa0b037cbe4692be046f7dae06d0fe schema:volumeNumber 35
109 rdf:type schema:PublicationVolume
110 N6928bda4fdf24b29875906994ebe876b schema:name doi
111 schema:value 10.1007/s10439-006-9228-z
112 rdf:type schema:PropertyValue
113 N7040d2517169471da8b14a2fe4f372b8 schema:issueNumber 2
114 rdf:type schema:PublicationIssue
115 N767d6462484e4de8882ddefa9a7bc443 rdf:first sg:person.01075261633.68
116 rdf:rest Ndf76c89278c14851b150db583f0336b0
117 N824266ec5f844acd959e25e83b2ed575 rdf:first sg:person.01236156623.13
118 rdf:rest N767d6462484e4de8882ddefa9a7bc443
119 N83e1bb13176f46ceb24b9792b9670db8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Stress, Mechanical
121 rdf:type schema:DefinedTerm
122 Nb9bc3f3a16264e7ab3dc4d0ae2e14a02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Elasticity
124 rdf:type schema:DefinedTerm
125 Ndf76c89278c14851b150db583f0336b0 rdf:first sg:person.0730323706.34
126 rdf:rest N2a29c3dd2a484dcda299ed0be7c3dc2a
127 Ne1a89ce1bc324f95880a7ff509cd47ea schema:name dimensions_id
128 schema:value pub.1046489402
129 rdf:type schema:PropertyValue
130 Ne552cc64abd34eb0a9a5e33b8c26ea0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Larynx
132 rdf:type schema:DefinedTerm
133 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
134 schema:name Medical and Health Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
137 schema:name Cardiorespiratory Medicine and Haematology
138 rdf:type schema:DefinedTerm
139 sg:grant.2436783 http://pending.schema.org/fundedItem sg:pub.10.1007/s10439-006-9228-z
140 rdf:type schema:MonetaryGrant
141 sg:grant.2518609 http://pending.schema.org/fundedItem sg:pub.10.1007/s10439-006-9228-z
142 rdf:type schema:MonetaryGrant
143 sg:journal.1087247 schema:issn 0145-3068
144 1573-9686
145 schema:name Annals of Biomedical Engineering
146 rdf:type schema:Periodical
147 sg:person.01010055067.53 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
148 schema:familyName Stamenović
149 schema:givenName Dimitrije
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010055067.53
151 rdf:type schema:Person
152 sg:person.01075261633.68 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
153 schema:familyName Hu
154 schema:givenName Shaohua
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075261633.68
156 rdf:type schema:Person
157 sg:person.01234670767.48 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
158 schema:familyName Wang
159 schema:givenName Ning
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234670767.48
161 rdf:type schema:Person
162 sg:person.01236156623.13 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
163 schema:familyName Rosenblatt
164 schema:givenName Noah
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236156623.13
166 rdf:type schema:Person
167 sg:person.0730323706.34 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
168 schema:familyName Suki
169 schema:givenName Béla
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34
171 rdf:type schema:Person
172 sg:pub.10.1038/nmat1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025381030
173 https://doi.org/10.1038/nmat1404
174 rdf:type schema:CreativeWork
175 sg:pub.10.1114/1.1616932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046303847
176 https://doi.org/10.1114/1.1616932
177 rdf:type schema:CreativeWork
178 https://app.dimensions.ai/details/publication/pub.1076723778 schema:CreativeWork
179 https://doi.org/10.1002/cm.20130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022516661
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.actbio.2005.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041785881
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.bbrc.2004.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013967255
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0006-291x(03)01165-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025895780
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0006-3495(94)80856-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032412968
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0006-3495(94)81014-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051525693
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1073/pnas.141199598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035375454
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1083/jcb.200204153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028414527
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physreve.68.041914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060730695
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.87.148102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823785
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1469-7793.1999.0829n.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009080080
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1152/ajpcell.00269.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013155232
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1152/ajpcell.00374.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018553434
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1152/ajpcell.00425.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019750647
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1152/ajpcell.1989.256.2.c329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079163375
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1152/ajpcell.1996.271.5.c1660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083008651
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1152/ajpcell.1998.274.5.c1283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083272051
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1152/ajpcell.1999.276.1.c250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083373858
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1152/ajpcell.2001.281.5.c1468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074893617
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1152/ajplung.00077.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048830448
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1152/ajplung.00299.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026657999
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1152/ajplung.1999.277.3.l653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074520401
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1152/jappl.1989.67.6.2408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079102854
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1152/jappl.1996.81.6.2703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083040387
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1152/jappl.2000.89.5.2085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074719389
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1152/jappl.2001.91.2.986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074850672
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1152/japplphysiol.00255.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052911988
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1164/ajrccm.156.6.9611016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000343378
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1242/jcs.00359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043803465
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1529/biophysj.104.046649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002573175
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
240 schema:name Department of Biomedical Engineering, Boston University, 44 Cummington St., 02215, Boston, MA, USA
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.35403.31 schema:alternateName University of Illinois at Urbana Champaign
243 schema:name Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
246 schema:name Physiology Program, Department of Environmental Health, Harvard School of Public Health, 02115, Boston, MA, USA
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...