An Inverse Approach to Determine Solute and Solvent Permeability Parameters in Artificial Tissues View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-05

AUTHORS

Yimeng He, Ram V. Devireddy

ABSTRACT

This study presents a generic numerical model to simulate the coupled solute and solvent transport in tissue sections during addition and removal of chemical additives or cryoprotective agents (CPA; dimethylsulfoxide or DMSO). Osmotic responses of various tissue cells within the artificial tissue are predicted by the numerical model with three model parameters: Permeability of the tissue cell membrane to water (Lp), permeability of the tissue cell membrane to the solute or CPA (omega), and the diffusion coefficient of the solute or CPA in the extracellular space (D). By fitting the model results with published experimental data on solute/water concentrations at various locations within an artificial tissue, we were able to determine the permeability parameters of artificial tissue cells in the presence of 1.538 M DMSO. Lp and omega were determined at three different locations within the artificial tissue assuming a constant value of solute diffusivity (D = 1.0 x 10(-9) m2/s). The best fit values of Lp ranged from 0.59 x 10(-14) to 4.22 x 10(-14) m3/N-s while omega ranged from 0 to 6.6 x 10(-13) mol/N-s. Based on these values of Lp and omega, the solute reflection coefficient, sigma = 1 - omegav(-)CPA/Lp, ranged from 0.9923 to 1.0. The relative values of omega and sigma suggest that the artificial tissue cells are relatively impermeable to DMSO (or omega approximately 0 and sigma approximately 1.0). This observation was used to modify our model to predict the values of Lp and D assuming omega = 0 and sigma = 1.0. The best fit values of Lp ranged from 640 x 10(-14) to 2.1 x 10(-14) m3/N-s while D ranged from 0.63 x 10(-9) to 1.52 x 10(-9) m2/s. The permeability parameters obtained in the present study represent the first such effort for artificial tissues. More... »

PAGES

709-718

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10439-005-1511-x

DOI

http://dx.doi.org/10.1007/s10439-005-1511-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012000368

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15981870


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Absorption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomimetic Materials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane Permeability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Connective Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cryopreservation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cryoprotective Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Solutions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Solvents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water-Electrolyte Balance", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Louisiana State University", 
          "id": "https://www.grid.ac/institutes/grid.64337.35", 
          "name": [
            "Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, 70803, Baton Rouge, LA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Yimeng", 
        "id": "sg:person.0652146142.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652146142.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Louisiana State University", 
          "id": "https://www.grid.ac/institutes/grid.64337.35", 
          "name": [
            "Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, 70803, Baton Rouge, LA", 
            "Department of Mechanical Engineering, 2508 CEBA Bldg., Louisiana State University, 70803, Baton Rouge, LA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Devireddy", 
        "givenName": "Ram V.", 
        "id": "sg:person.01335461313.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335461313.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1113/jphysiol.1919.sp001839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000106536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0011-2240(79)90105-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000311204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0011-2240(02)00002-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002175123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cryo.1994.1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002955626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp010033y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003340138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1998.tb10149.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005946179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1998.tb10149.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005946179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/humrep/12.1.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012140183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.1985.tb02641.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026675391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02796236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026853123", 
          "https://doi.org/10.1007/bf02796236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(63)90088-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027437509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cryo.1998.2135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029307884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3002(58)90330-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029942854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3002(58)90330-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029942854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cryobiol.2003.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032668999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cryobiol.2003.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032668999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0011-2240(81)90004-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037230857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0011-2240(79)90142-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040757043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cryo.1996.1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044248333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrd.20209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050282101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0011-2240(88)90042-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050452418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690450321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051591004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1350-4533(03)00073-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052273445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1350-4533(03)00073-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052273445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2796091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062082449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3727/000000001783986323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074955533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3727/000000001783986323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074955533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074980654", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.1984.247.3.c125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081713544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4159/harvard.9780674494121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099346803"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-05", 
    "datePublishedReg": "2005-05-01", 
    "description": "This study presents a generic numerical model to simulate the coupled solute and solvent transport in tissue sections during addition and removal of chemical additives or cryoprotective agents (CPA; dimethylsulfoxide or DMSO). Osmotic responses of various tissue cells within the artificial tissue are predicted by the numerical model with three model parameters: Permeability of the tissue cell membrane to water (Lp), permeability of the tissue cell membrane to the solute or CPA (omega), and the diffusion coefficient of the solute or CPA in the extracellular space (D). By fitting the model results with published experimental data on solute/water concentrations at various locations within an artificial tissue, we were able to determine the permeability parameters of artificial tissue cells in the presence of 1.538 M DMSO. Lp and omega were determined at three different locations within the artificial tissue assuming a constant value of solute diffusivity (D = 1.0 x 10(-9) m2/s). The best fit values of Lp ranged from 0.59 x 10(-14) to 4.22 x 10(-14) m3/N-s while omega ranged from 0 to 6.6 x 10(-13) mol/N-s. Based on these values of Lp and omega, the solute reflection coefficient, sigma = 1 - omegav(-)CPA/Lp, ranged from 0.9923 to 1.0. The relative values of omega and sigma suggest that the artificial tissue cells are relatively impermeable to DMSO (or omega approximately 0 and sigma approximately 1.0). This observation was used to modify our model to predict the values of Lp and D assuming omega = 0 and sigma = 1.0. The best fit values of Lp ranged from 640 x 10(-14) to 2.1 x 10(-14) m3/N-s while D ranged from 0.63 x 10(-9) to 1.52 x 10(-9) m2/s. The permeability parameters obtained in the present study represent the first such effort for artificial tissues.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10439-005-1511-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "An Inverse Approach to Determine Solute and Solvent Permeability Parameters in Artificial Tissues", 
    "pagination": "709-718", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "392d3d2d059d4749860137f31ea286753e4698374db86038dbfcf75b9e4d6e02"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15981870"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10439-005-1511-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012000368"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10439-005-1511-x", 
      "https://app.dimensions.ai/details/publication/pub.1012000368"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13068_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10439-005-1511-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10439-005-1511-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10439-005-1511-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10439-005-1511-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10439-005-1511-x'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      70 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10439-005-1511-x schema:about N132f6260f94d4fc5b7492ba4e5967686
2 N1a6dbe3e3e0a43568d8920ed3ce5b548
3 N3fce18c8241f464da496036ee7a2b05f
4 N41abd0a9663b422a81f70388ca75ae97
5 N4d2bb0ac457747e2a6b7e33a00c019e3
6 N8f15ff4d7cde4804b4b218c6dea3bba0
7 N93586007f575417a951ac2e514d50777
8 Na3b36400a0324dc4b50d3f928d11621e
9 Nb36234d003eb4333ba672fe9167963b0
10 Nb89ac1a26290448bbdfc47d257ab666b
11 Nbbf9a36a5fb643de889244776d683ffe
12 Nc3c9fbd0086347f5b7f1a67e5a68eadf
13 Nd03f009fd827428a8e254897f1db4bd2
14 Nd1b30eb296aa489d9ee0b91e7530043d
15 Nd94e608529ed4122bff3405c35ea982f
16 Ne8a12772d5ed4982ac9144565c02981a
17 anzsrc-for:06
18 anzsrc-for:0601
19 schema:author N274f36a2be1044f19c270eb2885dbc0e
20 schema:citation sg:pub.10.1007/bf02796236
21 https://app.dimensions.ai/details/publication/pub.1074980654
22 https://doi.org/10.1002/aic.690450321
23 https://doi.org/10.1002/mrd.20209
24 https://doi.org/10.1006/cryo.1994.1019
25 https://doi.org/10.1006/cryo.1996.1990
26 https://doi.org/10.1006/cryo.1998.2135
27 https://doi.org/10.1016/0006-3002(58)90330-5
28 https://doi.org/10.1016/0011-2240(79)90105-6
29 https://doi.org/10.1016/0011-2240(79)90142-1
30 https://doi.org/10.1016/0011-2240(81)90004-3
31 https://doi.org/10.1016/0011-2240(88)90042-9
32 https://doi.org/10.1016/0022-5193(63)90088-2
33 https://doi.org/10.1016/j.cryobiol.2003.08.003
34 https://doi.org/10.1016/s0011-2240(02)00002-0
35 https://doi.org/10.1016/s1350-4533(03)00073-0
36 https://doi.org/10.1021/bp010033y
37 https://doi.org/10.1093/humrep/12.1.112
38 https://doi.org/10.1111/j.1365-2818.1985.tb02641.x
39 https://doi.org/10.1111/j.1749-6632.1998.tb10149.x
40 https://doi.org/10.1113/jphysiol.1919.sp001839
41 https://doi.org/10.1115/1.2796091
42 https://doi.org/10.1152/ajpcell.1984.247.3.c125
43 https://doi.org/10.3727/000000001783986323
44 https://doi.org/10.4159/harvard.9780674494121
45 schema:datePublished 2005-05
46 schema:datePublishedReg 2005-05-01
47 schema:description This study presents a generic numerical model to simulate the coupled solute and solvent transport in tissue sections during addition and removal of chemical additives or cryoprotective agents (CPA; dimethylsulfoxide or DMSO). Osmotic responses of various tissue cells within the artificial tissue are predicted by the numerical model with three model parameters: Permeability of the tissue cell membrane to water (Lp), permeability of the tissue cell membrane to the solute or CPA (omega), and the diffusion coefficient of the solute or CPA in the extracellular space (D). By fitting the model results with published experimental data on solute/water concentrations at various locations within an artificial tissue, we were able to determine the permeability parameters of artificial tissue cells in the presence of 1.538 M DMSO. Lp and omega were determined at three different locations within the artificial tissue assuming a constant value of solute diffusivity (D = 1.0 x 10(-9) m2/s). The best fit values of Lp ranged from 0.59 x 10(-14) to 4.22 x 10(-14) m3/N-s while omega ranged from 0 to 6.6 x 10(-13) mol/N-s. Based on these values of Lp and omega, the solute reflection coefficient, sigma = 1 - omegav(-)CPA/Lp, ranged from 0.9923 to 1.0. The relative values of omega and sigma suggest that the artificial tissue cells are relatively impermeable to DMSO (or omega approximately 0 and sigma approximately 1.0). This observation was used to modify our model to predict the values of Lp and D assuming omega = 0 and sigma = 1.0. The best fit values of Lp ranged from 640 x 10(-14) to 2.1 x 10(-14) m3/N-s while D ranged from 0.63 x 10(-9) to 1.52 x 10(-9) m2/s. The permeability parameters obtained in the present study represent the first such effort for artificial tissues.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N0dc07f52c16a4a838dca9587a6273156
52 N6acdd71d3be44c2698718f9165907f69
53 sg:journal.1087247
54 schema:name An Inverse Approach to Determine Solute and Solvent Permeability Parameters in Artificial Tissues
55 schema:pagination 709-718
56 schema:productId N324b12520ea744639a0b4c9023b21ef7
57 N6c7c0070754842c98c5813de5359af4f
58 Nb3d68f11a9ad4e49bfd3b7aaf725a96b
59 Nd1266f12b97d45f6b82f5b92742d0853
60 Nec748911bc2c45b28f8c6429b671923d
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012000368
62 https://doi.org/10.1007/s10439-005-1511-x
63 schema:sdDatePublished 2019-04-11T14:25
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N0105892484dd4804b6d39362782890db
66 schema:url http://link.springer.com/10.1007%2Fs10439-005-1511-x
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0105892484dd4804b6d39362782890db schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N0dc07f52c16a4a838dca9587a6273156 schema:volumeNumber 33
73 rdf:type schema:PublicationVolume
74 N132f6260f94d4fc5b7492ba4e5967686 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Solutions
76 rdf:type schema:DefinedTerm
77 N1a6dbe3e3e0a43568d8920ed3ce5b548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Cryopreservation
79 rdf:type schema:DefinedTerm
80 N274f36a2be1044f19c270eb2885dbc0e rdf:first sg:person.0652146142.18
81 rdf:rest Nd67bde7d93554c38b00780ad962c1fc8
82 N324b12520ea744639a0b4c9023b21ef7 schema:name doi
83 schema:value 10.1007/s10439-005-1511-x
84 rdf:type schema:PropertyValue
85 N3fce18c8241f464da496036ee7a2b05f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Biomimetic Materials
87 rdf:type schema:DefinedTerm
88 N41abd0a9663b422a81f70388ca75ae97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Models, Chemical
90 rdf:type schema:DefinedTerm
91 N4d2bb0ac457747e2a6b7e33a00c019e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Water-Electrolyte Balance
93 rdf:type schema:DefinedTerm
94 N6acdd71d3be44c2698718f9165907f69 schema:issueNumber 5
95 rdf:type schema:PublicationIssue
96 N6c7c0070754842c98c5813de5359af4f schema:name nlm_unique_id
97 schema:value 0361512
98 rdf:type schema:PropertyValue
99 N8f15ff4d7cde4804b4b218c6dea3bba0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Cell Membrane Permeability
101 rdf:type schema:DefinedTerm
102 N93586007f575417a951ac2e514d50777 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Computer Simulation
104 rdf:type schema:DefinedTerm
105 Na3b36400a0324dc4b50d3f928d11621e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Models, Biological
107 rdf:type schema:DefinedTerm
108 Nb36234d003eb4333ba672fe9167963b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Cell Membrane
110 rdf:type schema:DefinedTerm
111 Nb3d68f11a9ad4e49bfd3b7aaf725a96b schema:name pubmed_id
112 schema:value 15981870
113 rdf:type schema:PropertyValue
114 Nb89ac1a26290448bbdfc47d257ab666b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Solvents
116 rdf:type schema:DefinedTerm
117 Nbbf9a36a5fb643de889244776d683ffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Cryoprotective Agents
119 rdf:type schema:DefinedTerm
120 Nc3c9fbd0086347f5b7f1a67e5a68eadf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 Nd03f009fd827428a8e254897f1db4bd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Connective Tissue
125 rdf:type schema:DefinedTerm
126 Nd1266f12b97d45f6b82f5b92742d0853 schema:name dimensions_id
127 schema:value pub.1012000368
128 rdf:type schema:PropertyValue
129 Nd1b30eb296aa489d9ee0b91e7530043d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Animals
131 rdf:type schema:DefinedTerm
132 Nd67bde7d93554c38b00780ad962c1fc8 rdf:first sg:person.01335461313.65
133 rdf:rest rdf:nil
134 Nd94e608529ed4122bff3405c35ea982f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Absorption
136 rdf:type schema:DefinedTerm
137 Ne8a12772d5ed4982ac9144565c02981a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Diffusion
139 rdf:type schema:DefinedTerm
140 Nec748911bc2c45b28f8c6429b671923d schema:name readcube_id
141 schema:value 392d3d2d059d4749860137f31ea286753e4698374db86038dbfcf75b9e4d6e02
142 rdf:type schema:PropertyValue
143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biological Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
147 schema:name Biochemistry and Cell Biology
148 rdf:type schema:DefinedTerm
149 sg:journal.1087247 schema:issn 0145-3068
150 1573-9686
151 schema:name Annals of Biomedical Engineering
152 rdf:type schema:Periodical
153 sg:person.01335461313.65 schema:affiliation https://www.grid.ac/institutes/grid.64337.35
154 schema:familyName Devireddy
155 schema:givenName Ram V.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335461313.65
157 rdf:type schema:Person
158 sg:person.0652146142.18 schema:affiliation https://www.grid.ac/institutes/grid.64337.35
159 schema:familyName He
160 schema:givenName Yimeng
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652146142.18
162 rdf:type schema:Person
163 sg:pub.10.1007/bf02796236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026853123
164 https://doi.org/10.1007/bf02796236
165 rdf:type schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1074980654 schema:CreativeWork
167 https://doi.org/10.1002/aic.690450321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051591004
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/mrd.20209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050282101
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1006/cryo.1994.1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002955626
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1006/cryo.1996.1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044248333
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1006/cryo.1998.2135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029307884
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0006-3002(58)90330-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029942854
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0011-2240(79)90105-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000311204
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0011-2240(79)90142-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040757043
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0011-2240(81)90004-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037230857
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0011-2240(88)90042-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050452418
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0022-5193(63)90088-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027437509
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.cryobiol.2003.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032668999
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0011-2240(02)00002-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002175123
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s1350-4533(03)00073-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052273445
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/bp010033y schema:sameAs https://app.dimensions.ai/details/publication/pub.1003340138
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/humrep/12.1.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012140183
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1365-2818.1985.tb02641.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026675391
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.1749-6632.1998.tb10149.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005946179
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1113/jphysiol.1919.sp001839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000106536
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1115/1.2796091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062082449
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1152/ajpcell.1984.247.3.c125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081713544
208 rdf:type schema:CreativeWork
209 https://doi.org/10.3727/000000001783986323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074955533
210 rdf:type schema:CreativeWork
211 https://doi.org/10.4159/harvard.9780674494121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099346803
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.64337.35 schema:alternateName Louisiana State University
214 schema:name Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, 70803, Baton Rouge, LA
215 Department of Mechanical Engineering, 2508 CEBA Bldg., Louisiana State University, 70803, Baton Rouge, LA
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...