Option pricing under fast-varying and rough stochastic volatility View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

Josselin Garnier, Knut Sølna

ABSTRACT

Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes. More... »

PAGES

489-516

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10436-018-0325-4

DOI

http://dx.doi.org/10.1007/s10436-018-0325-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104461198


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre de Math\u00e9matiques Appliqu\u00e9es", 
          "id": "https://www.grid.ac/institutes/grid.462265.1", 
          "name": [
            "Centre de Math\u00e9matiques Appliqu\u00e9es, Ecole Polytechnique, 91128, Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garnier", 
        "givenName": "Josselin", 
        "id": "sg:person.013432326510.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013432326510.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Mathematics, University of California, 92697, Irvine, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00f8lna", 
        "givenName": "Knut", 
        "id": "sg:person.013556147301.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013556147301.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/1-84628-048-6_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001011595", 
          "https://doi.org/10.1007/1-84628-048-6_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14697688.2016.1197410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002166816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4076(97)00072-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008493170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/713665670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009326542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1469-7688/1/2/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013117665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9965.00057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015593677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfineco.2013.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023647093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2014.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025690629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10436-010-0156-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031440620", 
          "https://doi.org/10.1007/s10436-010-0156-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(02)01938-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035033524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10436-016-0289-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038105259", 
          "https://doi.org/10.1007/s10436-016-0289-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10436-016-0289-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038105259", 
          "https://doi.org/10.1007/s10436-016-0289-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2012.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039193170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2007.08.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040479559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118266915.ch2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047694313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wilm.42820040215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054481719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2011v066n02abeh004746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058198320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rfs/6.2.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060005590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1010093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062860082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21314/jcf.2003.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068976608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ribaf.2017.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083873207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10959-017-0756-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084028315", 
          "https://doi.org/10.1007/s10959-017-0756-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10959-017-0756-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084028315", 
          "https://doi.org/10.1007/s10959-017-0756-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/15m1036749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091035969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14697688.2017.1353127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091357372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4907427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098512224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139020534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098713255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/24725854.2018.1444297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101175133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14697688.2017.1393551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101550095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.2636829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102436483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00245-018-9497-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103682580", 
          "https://doi.org/10.1007/s00245-018-9497-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00245-018-9497-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103682580", 
          "https://doi.org/10.1007/s00245-018-9497-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10436-018-0325-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136316", 
        "issn": [
          "1614-2446", 
          "1614-2454"
        ], 
        "name": "Annals of Finance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Option pricing under fast-varying and rough stochastic volatility", 
    "pagination": "489-516", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b1fff62c91a55e5c1a2e1548e5630e48d795ec05d6b8ebff150012c467ce8dc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10436-018-0325-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104461198"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10436-018-0325-4", 
      "https://app.dimensions.ai/details/publication/pub.1104461198"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10436-018-0325-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10436-018-0325-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10436-018-0325-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10436-018-0325-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10436-018-0325-4'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10436-018-0325-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nc7d45ff7e35143e9bf2437fb2749c214
4 schema:citation sg:pub.10.1007/1-84628-048-6_11
5 sg:pub.10.1007/s00245-018-9497-6
6 sg:pub.10.1007/s10436-010-0156-4
7 sg:pub.10.1007/s10436-016-0289-1
8 sg:pub.10.1007/s10959-017-0756-2
9 https://doi.org/10.1002/9781118266915.ch2
10 https://doi.org/10.1002/wilm.42820040215
11 https://doi.org/10.1016/j.enpol.2014.04.027
12 https://doi.org/10.1016/j.jfineco.2013.01.002
13 https://doi.org/10.1016/j.physa.2007.08.061
14 https://doi.org/10.1016/j.physa.2012.08.004
15 https://doi.org/10.1016/j.ribaf.2017.01.003
16 https://doi.org/10.1016/s0304-4076(97)00072-9
17 https://doi.org/10.1016/s0378-4371(02)01938-6
18 https://doi.org/10.1017/cbo9781139020534
19 https://doi.org/10.1063/1.4907427
20 https://doi.org/10.1070/rm2011v066n02abeh004746
21 https://doi.org/10.1080/14697688.2016.1197410
22 https://doi.org/10.1080/14697688.2017.1353127
23 https://doi.org/10.1080/14697688.2017.1393551
24 https://doi.org/10.1080/24725854.2018.1444297
25 https://doi.org/10.1080/713665670
26 https://doi.org/10.1088/1469-7688/1/2/305
27 https://doi.org/10.1093/rfs/6.2.327
28 https://doi.org/10.1111/1467-9965.00057
29 https://doi.org/10.1137/1010093
30 https://doi.org/10.1137/15m1036749
31 https://doi.org/10.21314/jcf.2003.103
32 https://doi.org/10.2139/ssrn.2636829
33 schema:datePublished 2018-11
34 schema:datePublishedReg 2018-11-01
35 schema:description Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N966d93187f8e4160ba491db0f565bfc6
40 N9e0f2c864032477d99d3e3b25c00d791
41 sg:journal.1136316
42 schema:name Option pricing under fast-varying and rough stochastic volatility
43 schema:pagination 489-516
44 schema:productId N0670ca3afbc448319ef134985d698d75
45 N23429bc521cc413581f0db4cbc0d9d19
46 N82a5b54fe5ae4dbebd18e5c0fc398251
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104461198
48 https://doi.org/10.1007/s10436-018-0325-4
49 schema:sdDatePublished 2019-04-10T15:10
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N600f7f577b564f12bc30600888b0a896
52 schema:url https://link.springer.com/10.1007%2Fs10436-018-0325-4
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0670ca3afbc448319ef134985d698d75 schema:name readcube_id
57 schema:value 9b1fff62c91a55e5c1a2e1548e5630e48d795ec05d6b8ebff150012c467ce8dc
58 rdf:type schema:PropertyValue
59 N23429bc521cc413581f0db4cbc0d9d19 schema:name dimensions_id
60 schema:value pub.1104461198
61 rdf:type schema:PropertyValue
62 N600f7f577b564f12bc30600888b0a896 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N78c4b6ba6acd46389665338d0873a6c9 rdf:first sg:person.013556147301.58
65 rdf:rest rdf:nil
66 N82a5b54fe5ae4dbebd18e5c0fc398251 schema:name doi
67 schema:value 10.1007/s10436-018-0325-4
68 rdf:type schema:PropertyValue
69 N966d93187f8e4160ba491db0f565bfc6 schema:issueNumber 4
70 rdf:type schema:PublicationIssue
71 N9e0f2c864032477d99d3e3b25c00d791 schema:volumeNumber 14
72 rdf:type schema:PublicationVolume
73 Nc7d45ff7e35143e9bf2437fb2749c214 rdf:first sg:person.013432326510.30
74 rdf:rest N78c4b6ba6acd46389665338d0873a6c9
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
79 schema:name Statistics
80 rdf:type schema:DefinedTerm
81 sg:journal.1136316 schema:issn 1614-2446
82 1614-2454
83 schema:name Annals of Finance
84 rdf:type schema:Periodical
85 sg:person.013432326510.30 schema:affiliation https://www.grid.ac/institutes/grid.462265.1
86 schema:familyName Garnier
87 schema:givenName Josselin
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013432326510.30
89 rdf:type schema:Person
90 sg:person.013556147301.58 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
91 schema:familyName Sølna
92 schema:givenName Knut
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013556147301.58
94 rdf:type schema:Person
95 sg:pub.10.1007/1-84628-048-6_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001011595
96 https://doi.org/10.1007/1-84628-048-6_11
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s00245-018-9497-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103682580
99 https://doi.org/10.1007/s00245-018-9497-6
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s10436-010-0156-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031440620
102 https://doi.org/10.1007/s10436-010-0156-4
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10436-016-0289-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038105259
105 https://doi.org/10.1007/s10436-016-0289-1
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10959-017-0756-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084028315
108 https://doi.org/10.1007/s10959-017-0756-2
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/9781118266915.ch2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047694313
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/wilm.42820040215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054481719
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.enpol.2014.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025690629
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jfineco.2013.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023647093
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.physa.2007.08.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040479559
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.physa.2012.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039193170
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.ribaf.2017.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083873207
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0304-4076(97)00072-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008493170
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0378-4371(02)01938-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035033524
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/cbo9781139020534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098713255
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.4907427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098512224
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1070/rm2011v066n02abeh004746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198320
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/14697688.2016.1197410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002166816
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/14697688.2017.1353127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091357372
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1080/14697688.2017.1393551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101550095
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1080/24725854.2018.1444297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101175133
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/713665670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009326542
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1088/1469-7688/1/2/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013117665
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1093/rfs/6.2.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060005590
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/1467-9965.00057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015593677
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1137/1010093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062860082
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/15m1036749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091035969
153 rdf:type schema:CreativeWork
154 https://doi.org/10.21314/jcf.2003.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068976608
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2139/ssrn.2636829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102436483
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
159 schema:name Department of Mathematics, University of California, 92697, Irvine, CA, USA
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.462265.1 schema:alternateName Centre de Mathématiques Appliquées
162 schema:name Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128, Palaiseau Cedex, France
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...