Crystal plasticity model to predict fatigue crack nucleation based on the phase transformation theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06-11

AUTHORS

Lu Liu, Jundong Wang, Tao Zeng, Yao Yao

ABSTRACT

A crystal plasticity model is developed to predict the fatigue crack nucleation of polycrystalline materials, in which the accumulated dislocation dipoles are considered to be the origin of damage. To describe the overall softening behavior under cyclic loading, a slip system-level dislocation density-related damage model is proposed and implemented in the finite element analysis with Voronoi tessellation. The numerical model is applied to calibrate the stress–strain relationship at different cycles before fatigue crack nucleation. The parameters determined from the numerical analysis are substituted into a modified phase transformation model to predict the critical fatigue crack nucleation cycle. Comparing with the experimental results of Sn–3.0Ag–0.5Cu (SAC305) alloy and P91 steel, the proposed method can describe the constitutive behavior and predict the fatigue crack nucleation accurately. More... »

PAGES

1033-1043

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10409-019-00876-9

DOI

http://dx.doi.org/10.1007/s10409-019-00876-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1117044840


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lu", 
        "id": "sg:person.014344636125.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014344636125.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jundong", 
        "id": "sg:person.016001652421.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016001652421.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Tao", 
        "id": "sg:person.013221665047.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013221665047.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Eisenforschung GmbH, Max Planck Str. 1, 40237, D\u00fcsseldorf, Germany", 
          "id": "http://www.grid.ac/institutes/grid.13829.31", 
          "name": [
            "School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi\u2019an, China", 
            "Max-Planck-Institut f\u00fcr Eisenforschung GmbH, Max Planck Str. 1, 40237, D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Yao", 
        "id": "sg:person.011313423711.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313423711.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11664-009-0929-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001736345", 
          "https://doi.org/10.1007/s11664-009-0929-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-003-0207-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048225255", 
          "https://doi.org/10.1007/s11661-003-0207-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-018-0825-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111893557", 
          "https://doi.org/10.1007/s10409-018-0825-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00034895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023528009", 
          "https://doi.org/10.1007/bf00034895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-9306-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022062393", 
          "https://doi.org/10.1007/978-94-011-9306-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06-11", 
    "datePublishedReg": "2019-06-11", 
    "description": "A crystal plasticity model is developed to predict the fatigue crack nucleation of polycrystalline materials, in which the accumulated dislocation dipoles are considered to be the origin of damage. To describe the overall softening behavior under cyclic loading, a slip system-level dislocation density-related damage model is proposed and implemented in the finite element analysis with Voronoi tessellation. The numerical model is applied to calibrate the stress\u2013strain relationship at different cycles before fatigue crack nucleation. The parameters determined from the numerical analysis are substituted into a modified phase transformation model to predict the critical fatigue crack nucleation cycle. Comparing with the experimental results of Sn\u20133.0Ag\u20130.5Cu (SAC305) alloy and P91 steel, the proposed method can describe the constitutive behavior and predict the fatigue crack nucleation accurately.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10409-019-00876-9", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8124494", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8132855", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8126163", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1294781", 
        "issn": [
          "0567-7718", 
          "1614-3116"
        ], 
        "name": "Acta Mechanica Sinica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "crystal plasticity model", 
      "plasticity model", 
      "finite element analysis", 
      "phase transformation model", 
      "stress-strain relationship", 
      "origin of damage", 
      "P91 steel", 
      "phase transformation theory", 
      "cyclic loading", 
      "constitutive behavior", 
      "element analysis", 
      "nucleation cycle", 
      "damage model", 
      "numerical model", 
      "critical fatigue", 
      "polycrystalline materials", 
      "numerical analysis", 
      "dislocation dipoles", 
      "nucleation", 
      "experimental results", 
      "different cycles", 
      "Voronoi tessellation", 
      "steel", 
      "fatigue", 
      "alloy", 
      "transformation model", 
      "transformation theory", 
      "loading", 
      "behavior", 
      "model", 
      "materials", 
      "cycle", 
      "parameters", 
      "tessellation", 
      "method", 
      "dipole", 
      "analysis", 
      "results", 
      "damage", 
      "theory", 
      "relationship", 
      "origin"
    ], 
    "name": "Crystal plasticity model to predict fatigue crack nucleation based on the phase transformation theory", 
    "pagination": "1033-1043", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1117044840"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10409-019-00876-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10409-019-00876-9", 
      "https://app.dimensions.ai/details/publication/pub.1117044840"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_812.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10409-019-00876-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10409-019-00876-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10409-019-00876-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10409-019-00876-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10409-019-00876-9'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      71 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10409-019-00876-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8921658f61a1412bb28d9ee4f3259119
4 schema:citation sg:pub.10.1007/978-94-011-9306-1
5 sg:pub.10.1007/bf00034895
6 sg:pub.10.1007/s10409-018-0825-5
7 sg:pub.10.1007/s11661-003-0207-9
8 sg:pub.10.1007/s11664-009-0929-6
9 schema:datePublished 2019-06-11
10 schema:datePublishedReg 2019-06-11
11 schema:description A crystal plasticity model is developed to predict the fatigue crack nucleation of polycrystalline materials, in which the accumulated dislocation dipoles are considered to be the origin of damage. To describe the overall softening behavior under cyclic loading, a slip system-level dislocation density-related damage model is proposed and implemented in the finite element analysis with Voronoi tessellation. The numerical model is applied to calibrate the stress–strain relationship at different cycles before fatigue crack nucleation. The parameters determined from the numerical analysis are substituted into a modified phase transformation model to predict the critical fatigue crack nucleation cycle. Comparing with the experimental results of Sn–3.0Ag–0.5Cu (SAC305) alloy and P91 steel, the proposed method can describe the constitutive behavior and predict the fatigue crack nucleation accurately.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N27943cbd8cd34e3c8cf4ba56f6c54439
15 N81e50e34e01b4ee09aabbfdeac26772e
16 sg:journal.1294781
17 schema:keywords P91 steel
18 Voronoi tessellation
19 alloy
20 analysis
21 behavior
22 constitutive behavior
23 critical fatigue
24 crystal plasticity model
25 cycle
26 cyclic loading
27 damage
28 damage model
29 different cycles
30 dipole
31 dislocation dipoles
32 element analysis
33 experimental results
34 fatigue
35 finite element analysis
36 loading
37 materials
38 method
39 model
40 nucleation
41 nucleation cycle
42 numerical analysis
43 numerical model
44 origin
45 origin of damage
46 parameters
47 phase transformation model
48 phase transformation theory
49 plasticity model
50 polycrystalline materials
51 relationship
52 results
53 steel
54 stress-strain relationship
55 tessellation
56 theory
57 transformation model
58 transformation theory
59 schema:name Crystal plasticity model to predict fatigue crack nucleation based on the phase transformation theory
60 schema:pagination 1033-1043
61 schema:productId N09df32e1c0044301a0d037f28efcd293
62 N4c9a030d325f448e8c70b682859297f3
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117044840
64 https://doi.org/10.1007/s10409-019-00876-9
65 schema:sdDatePublished 2022-11-24T21:04
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N37c015dfa66545ce914020eb814555a9
68 schema:url https://doi.org/10.1007/s10409-019-00876-9
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N094125e65ab34d98b28083093bfdcf50 rdf:first sg:person.016001652421.95
73 rdf:rest N8d920d5aa67a4cd7b5edbd3ca2a6e202
74 N09df32e1c0044301a0d037f28efcd293 schema:name doi
75 schema:value 10.1007/s10409-019-00876-9
76 rdf:type schema:PropertyValue
77 N27943cbd8cd34e3c8cf4ba56f6c54439 schema:volumeNumber 35
78 rdf:type schema:PublicationVolume
79 N37c015dfa66545ce914020eb814555a9 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N4c9a030d325f448e8c70b682859297f3 schema:name dimensions_id
82 schema:value pub.1117044840
83 rdf:type schema:PropertyValue
84 N54c31cb10b4e4d389df52b72b2ba6693 rdf:first sg:person.011313423711.63
85 rdf:rest rdf:nil
86 N81e50e34e01b4ee09aabbfdeac26772e schema:issueNumber 5
87 rdf:type schema:PublicationIssue
88 N8921658f61a1412bb28d9ee4f3259119 rdf:first sg:person.014344636125.74
89 rdf:rest N094125e65ab34d98b28083093bfdcf50
90 N8d920d5aa67a4cd7b5edbd3ca2a6e202 rdf:first sg:person.013221665047.94
91 rdf:rest N54c31cb10b4e4d389df52b72b2ba6693
92 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
93 schema:name Engineering
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
96 schema:name Materials Engineering
97 rdf:type schema:DefinedTerm
98 sg:grant.8124494 http://pending.schema.org/fundedItem sg:pub.10.1007/s10409-019-00876-9
99 rdf:type schema:MonetaryGrant
100 sg:grant.8126163 http://pending.schema.org/fundedItem sg:pub.10.1007/s10409-019-00876-9
101 rdf:type schema:MonetaryGrant
102 sg:grant.8132855 http://pending.schema.org/fundedItem sg:pub.10.1007/s10409-019-00876-9
103 rdf:type schema:MonetaryGrant
104 sg:journal.1294781 schema:issn 0567-7718
105 1614-3116
106 schema:name Acta Mechanica Sinica
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.011313423711.63 schema:affiliation grid-institutes:grid.13829.31
110 schema:familyName Yao
111 schema:givenName Yao
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011313423711.63
113 rdf:type schema:Person
114 sg:person.013221665047.94 schema:affiliation grid-institutes:grid.440588.5
115 schema:familyName Zeng
116 schema:givenName Tao
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013221665047.94
118 rdf:type schema:Person
119 sg:person.014344636125.74 schema:affiliation grid-institutes:grid.440588.5
120 schema:familyName Liu
121 schema:givenName Lu
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014344636125.74
123 rdf:type schema:Person
124 sg:person.016001652421.95 schema:affiliation grid-institutes:grid.440588.5
125 schema:familyName Wang
126 schema:givenName Jundong
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016001652421.95
128 rdf:type schema:Person
129 sg:pub.10.1007/978-94-011-9306-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022062393
130 https://doi.org/10.1007/978-94-011-9306-1
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00034895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528009
133 https://doi.org/10.1007/bf00034895
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10409-018-0825-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111893557
136 https://doi.org/10.1007/s10409-018-0825-5
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s11661-003-0207-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048225255
139 https://doi.org/10.1007/s11661-003-0207-9
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s11664-009-0929-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001736345
142 https://doi.org/10.1007/s11664-009-0929-6
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.13829.31 schema:alternateName Max-Planck-Institut für Eisenforschung GmbH, Max Planck Str. 1, 40237, Düsseldorf, Germany
145 schema:name Max-Planck-Institut für Eisenforschung GmbH, Max Planck Str. 1, 40237, Düsseldorf, Germany
146 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi’an, China
147 rdf:type schema:Organization
148 grid-institutes:grid.440588.5 schema:alternateName School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi’an, China
149 schema:name School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, 710072, Xi’an, China
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...