Macroscopic and microscopic mechanical behaviors of climbing tendrils View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Q. Guo, J. J. Dong, Y. Liu, X. H. Xu, Q. H. Qin, J. S. Wang

ABSTRACT

Tendril-bearing climbing plants must recur to the tendril helices with chiral perversion or dual chirality for climbing and to obtain sun exposure. Despite researchers’ prolonged fascination with climbing tendrils since Darwin’s time and even earlier, why the soft and slender tendrils can bear heavy loads such as the self-weight of a plant or additional load caused by rain remains elusive. In this paper, we take towel gourd tendrils as an example and investigate the macroscopic and microscopic mechanical behaviors of tendrils through experiments and simulations. Our study indicates that the tendril filament exhibits rubber-like hyperelastic behaviors and can particularly endure large elongation, which is mainly attributed to the superelasticity of the cellulose fibril helix contained in the cell wall. Combination of the tendril helical structure with dual chirality or chiral perversion at a macroscale and a cellulose filament helix at a subcellular level creates superior elasticity for biological species relying on support and climbing. This study provides deep insight into the structure–property relationship of climbing tendrils, and the relationship is useful for the bioinspired design of composite systems with superior elasticity. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10409-019-00849-y

DOI

http://dx.doi.org/10.1007/s10409-019-00849-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113060623


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Tianjin Key Laboratory of Modern Engineering Mechanics, Department of Mechanics, Tianjin University, 300054, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Q.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Tianjin Key Laboratory of Modern Engineering Mechanics, Department of Mechanics, Tianjin University, 300054, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "J. J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Tianjin Key Laboratory of Modern Engineering Mechanics, Department of Mechanics, Tianjin University, 300054, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Y.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Science, 100080, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "X. H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Australian National University", 
          "id": "https://www.grid.ac/institutes/grid.1001.0", 
          "name": [
            "Research School of Engineering, Australian National University, 2601, Canberra, ACT, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Q. H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Tianjin Key Laboratory of Modern Engineering Mechanics, Department of Mechanics, Tianjin University, 300054, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "J. S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3732/ajb.0900045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002747544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2015.0598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003545243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2006.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004937741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2012.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012373765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep12610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013461107", 
          "https://doi.org/10.1038/srep12610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8339.1865.tb00011.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015740293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5254/1.3538357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020348276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2007.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020951195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0631609100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023227222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-014-0067-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023727576", 
          "https://doi.org/10.1007/s10409-014-0067-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2014.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026902317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep03102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029187051", 
          "https://doi.org/10.1038/srep03102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0264-682x(84)90061-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038978860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0264-682x(84)90061-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038978860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039624207", 
          "https://doi.org/10.1038/nnano.2015.198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2016.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043066453", 
          "https://doi.org/10.1038/natrevmats.2016.7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4892014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051382197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1415502112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051591380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0143-0807/25/5/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059035568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1223304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2008.158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067969449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2017.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085929071", 
          "https://doi.org/10.1038/nprot.2017.038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-017-0735-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099921467", 
          "https://doi.org/10.1007/s10409-017-0735-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eml.2018.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101111793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eml.2018.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101111793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.8b01372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101770101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.8b01372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101770101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5039710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106681391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s18092973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106815854"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-28", 
    "datePublishedReg": "2019-03-28", 
    "description": "Tendril-bearing climbing plants must recur to the tendril helices with chiral perversion or dual chirality for climbing and to obtain sun exposure. Despite researchers\u2019 prolonged fascination with climbing tendrils since Darwin\u2019s time and even earlier, why the soft and slender tendrils can bear heavy loads such as the self-weight of a plant or additional load caused by rain remains elusive. In this paper, we take towel gourd tendrils as an example and investigate the macroscopic and microscopic mechanical behaviors of tendrils through experiments and simulations. Our study indicates that the tendril filament exhibits rubber-like hyperelastic behaviors and can particularly endure large elongation, which is mainly attributed to the superelasticity of the cellulose fibril helix contained in the cell wall. Combination of the tendril helical structure with dual chirality or chiral perversion at a macroscale and a cellulose filament helix at a subcellular level creates superior elasticity for biological species relying on support and climbing. This study provides deep insight into the structure\u2013property relationship of climbing tendrils, and the relationship is useful for the bioinspired design of composite systems with superior elasticity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10409-019-00849-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294781", 
        "issn": [
          "0567-7718", 
          "1614-3116"
        ], 
        "name": "Acta Mechanica Sinica", 
        "type": "Periodical"
      }
    ], 
    "name": "Macroscopic and microscopic mechanical behaviors of climbing tendrils", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e5e9e65cf5c585817d7ab32d7d0c0e1efd480138309bb4038a0fd7d3621ee439"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10409-019-00849-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113060623"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10409-019-00849-y", 
      "https://app.dimensions.ai/details/publication/pub.1113060623"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78947_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10409-019-00849-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10409-019-00849-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10409-019-00849-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10409-019-00849-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10409-019-00849-y'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      51 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10409-019-00849-y schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author Nb65e748eef124b44928aadde28a246ee
4 schema:citation sg:pub.10.1007/s10409-014-0067-0
5 sg:pub.10.1007/s10409-017-0735-y
6 sg:pub.10.1038/natrevmats.2016.7
7 sg:pub.10.1038/nnano.2015.198
8 sg:pub.10.1038/nprot.2017.038
9 sg:pub.10.1038/srep03102
10 sg:pub.10.1038/srep12610
11 https://doi.org/10.1016/0264-682x(84)90061-3
12 https://doi.org/10.1016/j.eml.2018.02.001
13 https://doi.org/10.1016/j.jbiomech.2014.02.010
14 https://doi.org/10.1016/j.jmps.2006.07.007
15 https://doi.org/10.1016/j.jmps.2012.04.011
16 https://doi.org/10.1016/j.pmatsci.2007.06.001
17 https://doi.org/10.1021/acsnano.8b01372
18 https://doi.org/10.1063/1.4892014
19 https://doi.org/10.1063/1.5039710
20 https://doi.org/10.1073/pnas.0631609100
21 https://doi.org/10.1073/pnas.1415502112
22 https://doi.org/10.1088/0143-0807/25/5/004
23 https://doi.org/10.1098/rsif.2015.0598
24 https://doi.org/10.1103/physrevlett.80.1564
25 https://doi.org/10.1111/j.1095-8339.1865.tb00011.x
26 https://doi.org/10.1126/science.1223304
27 https://doi.org/10.1557/mrs2008.158
28 https://doi.org/10.3390/s18092973
29 https://doi.org/10.3732/ajb.0900045
30 https://doi.org/10.5254/1.3538357
31 schema:datePublished 2019-03-28
32 schema:datePublishedReg 2019-03-28
33 schema:description Tendril-bearing climbing plants must recur to the tendril helices with chiral perversion or dual chirality for climbing and to obtain sun exposure. Despite researchers’ prolonged fascination with climbing tendrils since Darwin’s time and even earlier, why the soft and slender tendrils can bear heavy loads such as the self-weight of a plant or additional load caused by rain remains elusive. In this paper, we take towel gourd tendrils as an example and investigate the macroscopic and microscopic mechanical behaviors of tendrils through experiments and simulations. Our study indicates that the tendril filament exhibits rubber-like hyperelastic behaviors and can particularly endure large elongation, which is mainly attributed to the superelasticity of the cellulose fibril helix contained in the cell wall. Combination of the tendril helical structure with dual chirality or chiral perversion at a macroscale and a cellulose filament helix at a subcellular level creates superior elasticity for biological species relying on support and climbing. This study provides deep insight into the structure–property relationship of climbing tendrils, and the relationship is useful for the bioinspired design of composite systems with superior elasticity.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1294781
38 schema:name Macroscopic and microscopic mechanical behaviors of climbing tendrils
39 schema:pagination 1-9
40 schema:productId N721767a856f543248e526f588da593d4
41 N89d6866b5c074d26abc993432a757476
42 Na517c60a7a6846fa88f13c7c81e547d3
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113060623
44 https://doi.org/10.1007/s10409-019-00849-y
45 schema:sdDatePublished 2019-04-11T13:18
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N2dc5c8d7d6bc4814883cb346f6d456ca
48 schema:url https://link.springer.com/10.1007%2Fs10409-019-00849-y
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N14f7108a7b8148c2a4e5dd775bb9fd5e rdf:first N385b72315e524435a934c0b64cd1a32b
53 rdf:rest Ncb81e66600fb421db0661794b2f303b4
54 N2dc5c8d7d6bc4814883cb346f6d456ca schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N385b72315e524435a934c0b64cd1a32b schema:affiliation https://www.grid.ac/institutes/grid.458484.1
57 schema:familyName Xu
58 schema:givenName X. H.
59 rdf:type schema:Person
60 N43d2898bbfdc455db499434d0f791b0e schema:affiliation https://www.grid.ac/institutes/grid.33763.32
61 schema:familyName Guo
62 schema:givenName Q.
63 rdf:type schema:Person
64 N4987dc76097a4ab2b08625e1c0e4c25c rdf:first Nf1b56725c1ea40b4bc0d6657633eafd6
65 rdf:rest Nce630c49df364fa4839f2bd2d4207651
66 N5903f2ef0d924666bd48938d3da3d843 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
67 schema:familyName Liu
68 schema:givenName Y.
69 rdf:type schema:Person
70 N721767a856f543248e526f588da593d4 schema:name dimensions_id
71 schema:value pub.1113060623
72 rdf:type schema:PropertyValue
73 N7becbc4f9fad4b2881737a4101bc858b schema:affiliation https://www.grid.ac/institutes/grid.33763.32
74 schema:familyName Wang
75 schema:givenName J. S.
76 rdf:type schema:Person
77 N89d6866b5c074d26abc993432a757476 schema:name readcube_id
78 schema:value e5e9e65cf5c585817d7ab32d7d0c0e1efd480138309bb4038a0fd7d3621ee439
79 rdf:type schema:PropertyValue
80 Na517c60a7a6846fa88f13c7c81e547d3 schema:name doi
81 schema:value 10.1007/s10409-019-00849-y
82 rdf:type schema:PropertyValue
83 Nb65e748eef124b44928aadde28a246ee rdf:first N43d2898bbfdc455db499434d0f791b0e
84 rdf:rest N4987dc76097a4ab2b08625e1c0e4c25c
85 Nc83e43eff6f0418bae3ede7e6ad1455b schema:affiliation https://www.grid.ac/institutes/grid.1001.0
86 schema:familyName Qin
87 schema:givenName Q. H.
88 rdf:type schema:Person
89 Ncb81e66600fb421db0661794b2f303b4 rdf:first Nc83e43eff6f0418bae3ede7e6ad1455b
90 rdf:rest Ne44bad9f8b2a4cd98a8ae7c39b8c4ca2
91 Nce630c49df364fa4839f2bd2d4207651 rdf:first N5903f2ef0d924666bd48938d3da3d843
92 rdf:rest N14f7108a7b8148c2a4e5dd775bb9fd5e
93 Ne44bad9f8b2a4cd98a8ae7c39b8c4ca2 rdf:first N7becbc4f9fad4b2881737a4101bc858b
94 rdf:rest rdf:nil
95 Nf1b56725c1ea40b4bc0d6657633eafd6 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
96 schema:familyName Dong
97 schema:givenName J. J.
98 rdf:type schema:Person
99 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
100 schema:name Biological Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
103 schema:name Plant Biology
104 rdf:type schema:DefinedTerm
105 sg:journal.1294781 schema:issn 0567-7718
106 1614-3116
107 schema:name Acta Mechanica Sinica
108 rdf:type schema:Periodical
109 sg:pub.10.1007/s10409-014-0067-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023727576
110 https://doi.org/10.1007/s10409-014-0067-0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10409-017-0735-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1099921467
113 https://doi.org/10.1007/s10409-017-0735-y
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/natrevmats.2016.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043066453
116 https://doi.org/10.1038/natrevmats.2016.7
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nnano.2015.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039624207
119 https://doi.org/10.1038/nnano.2015.198
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nprot.2017.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085929071
122 https://doi.org/10.1038/nprot.2017.038
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/srep03102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029187051
125 https://doi.org/10.1038/srep03102
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/srep12610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013461107
128 https://doi.org/10.1038/srep12610
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0264-682x(84)90061-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038978860
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.eml.2018.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101111793
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jbiomech.2014.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026902317
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jmps.2006.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004937741
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jmps.2012.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012373765
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.pmatsci.2007.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020951195
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1021/acsnano.8b01372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101770101
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.4892014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051382197
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.5039710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106681391
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1073/pnas.0631609100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023227222
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1073/pnas.1415502112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051591380
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/0143-0807/25/5/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059035568
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1098/rsif.2015.0598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003545243
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.80.1564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816923
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1095-8339.1865.tb00011.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015740293
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.1223304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466763
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1557/mrs2008.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969449
163 rdf:type schema:CreativeWork
164 https://doi.org/10.3390/s18092973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106815854
165 rdf:type schema:CreativeWork
166 https://doi.org/10.3732/ajb.0900045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002747544
167 rdf:type schema:CreativeWork
168 https://doi.org/10.5254/1.3538357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020348276
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.1001.0 schema:alternateName Australian National University
171 schema:name Research School of Engineering, Australian National University, 2601, Canberra, ACT, Australia
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
174 schema:name Tianjin Key Laboratory of Modern Engineering Mechanics, Department of Mechanics, Tianjin University, 300054, Tianjin, China
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.458484.1 schema:alternateName Institute of Mechanics
177 schema:name State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Science, 100080, Beijing, China
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...