Combination of structural reliability and interval analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02

AUTHORS

Zhiping Qiu, Di Yang, Isaac Elishakoff

ABSTRACT

In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and credible model of the real state of actual affairs. In this paper, we developed a hybrid of probabilistic and non-probabilistic reliability theory, which describes the structural uncertain parameters as interval variables when statistical data are found insufficient. By using the interval analysis, a new method for calculating the interval of the structural reliability as well as the reliability index is introduced in this paper, and the traditional probabilistic theory is incorporated with the interval analysis. Moreover, the new method preserves the useful part of the traditional probabilistic reliability theory, but removes the restriction of its strict requirement on data acquisition. Example is presented to demonstrate the feasibility and validity of the proposed theory. More... »

PAGES

61-67

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10409-007-0111-4

DOI

http://dx.doi.org/10.1007/s10409-007-0111-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005202403


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Zhiping", 
        "id": "sg:person.014412456557.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Di", 
        "id": "sg:person.013542561427.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013542561427.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida Atlantic University", 
          "id": "https://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Department of Mechanical Engineering, Florida Atlantic University, 33431-0991, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elishakoff", 
        "givenName": "Isaac", 
        "id": "sg:person.07413722043.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413722043.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0960-0779(00)00102-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007401751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013818383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-006-0107-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028698864", 
          "https://doi.org/10.1007/s10409-006-0107-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(03)00282-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035941935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(03)00282-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035941935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1042297086", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-68697-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042297086", 
          "https://doi.org/10.1007/978-3-642-68697-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-68697-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042297086", 
          "https://doi.org/10.1007/978-3-642-68697-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61154-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044860693", 
          "https://doi.org/10.1007/978-3-642-61154-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61154-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044860693", 
          "https://doi.org/10.1007/978-3-642-61154-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61154-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044860693", 
          "https://doi.org/10.1007/978-3-642-61154-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02088988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048537692", 
          "https://doi.org/10.1007/bf02088988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052210171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(2002)128:10(1024)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057583997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(1999)125:1(98)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057599428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511529658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668642"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-02", 
    "datePublishedReg": "2008-02-01", 
    "description": "In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and credible model of the real state of actual affairs. In this paper, we developed a hybrid of probabilistic and non-probabilistic reliability theory, which describes the structural uncertain parameters as interval variables when statistical data are found insufficient. By using the interval analysis, a new method for calculating the interval of the structural reliability as well as the reliability index is introduced in this paper, and the traditional probabilistic theory is incorporated with the interval analysis. Moreover, the new method preserves the useful part of the traditional probabilistic reliability theory, but removes the restriction of its strict requirement on data acquisition. Example is presented to demonstrate the feasibility and validity of the proposed theory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10409-007-0111-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294781", 
        "issn": [
          "0567-7718", 
          "1614-3116"
        ], 
        "name": "Acta Mechanica Sinica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Combination of structural reliability and interval analysis", 
    "pagination": "61-67", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "18c92dccebabe3faf594899138ef51b305633990d65a5a35714916b969978bab"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10409-007-0111-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005202403"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10409-007-0111-4", 
      "https://app.dimensions.ai/details/publication/pub.1005202403"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13096_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10409-007-0111-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10409-007-0111-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10409-007-0111-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10409-007-0111-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10409-007-0111-4'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10409-007-0111-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf2c60b16d9a64b0092b40ac3dccd0eba
4 schema:citation sg:pub.10.1007/978-3-642-61154-4
5 sg:pub.10.1007/978-3-642-68697-9
6 sg:pub.10.1007/bf02088988
7 sg:pub.10.1007/s10409-006-0107-5
8 https://app.dimensions.ai/details/publication/pub.1042297086
9 https://doi.org/10.1002/nme.636
10 https://doi.org/10.1016/s0020-7683(03)00282-8
11 https://doi.org/10.1016/s0960-0779(00)00102-8
12 https://doi.org/10.1017/cbo9780511529658
13 https://doi.org/10.1061/(asce)0733-9399(2002)128:10(1024)
14 https://doi.org/10.1061/(asce)0733-9445(1999)125:1(98)
15 https://doi.org/10.1137/1.9781611970906
16 https://doi.org/10.2514/2.164
17 schema:datePublished 2008-02
18 schema:datePublishedReg 2008-02-01
19 schema:description In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and credible model of the real state of actual affairs. In this paper, we developed a hybrid of probabilistic and non-probabilistic reliability theory, which describes the structural uncertain parameters as interval variables when statistical data are found insufficient. By using the interval analysis, a new method for calculating the interval of the structural reliability as well as the reliability index is introduced in this paper, and the traditional probabilistic theory is incorporated with the interval analysis. Moreover, the new method preserves the useful part of the traditional probabilistic reliability theory, but removes the restriction of its strict requirement on data acquisition. Example is presented to demonstrate the feasibility and validity of the proposed theory.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N5587621dcdd845f88147ee754f7c2229
24 Nd7603c6196bf4df78138cb1ef4a727a7
25 sg:journal.1294781
26 schema:name Combination of structural reliability and interval analysis
27 schema:pagination 61-67
28 schema:productId N50f9390964a847d5800be59b86beebf1
29 N7268a1eb3a7048ddb3e79cd691791f3f
30 N9138895be8de4228b9f7359a05963554
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005202403
32 https://doi.org/10.1007/s10409-007-0111-4
33 schema:sdDatePublished 2019-04-11T14:31
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N9d2257f36cd841339f63cca94968cba5
36 schema:url http://link.springer.com/10.1007/s10409-007-0111-4
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N43ae0915cf2d4da5861111a036dc46ea rdf:first sg:person.013542561427.46
41 rdf:rest N952dcf8eaf5b4d20bd20bf2551cf03c1
42 N50f9390964a847d5800be59b86beebf1 schema:name readcube_id
43 schema:value 18c92dccebabe3faf594899138ef51b305633990d65a5a35714916b969978bab
44 rdf:type schema:PropertyValue
45 N5587621dcdd845f88147ee754f7c2229 schema:volumeNumber 24
46 rdf:type schema:PublicationVolume
47 N7268a1eb3a7048ddb3e79cd691791f3f schema:name dimensions_id
48 schema:value pub.1005202403
49 rdf:type schema:PropertyValue
50 N9138895be8de4228b9f7359a05963554 schema:name doi
51 schema:value 10.1007/s10409-007-0111-4
52 rdf:type schema:PropertyValue
53 N952dcf8eaf5b4d20bd20bf2551cf03c1 rdf:first sg:person.07413722043.13
54 rdf:rest rdf:nil
55 N9d2257f36cd841339f63cca94968cba5 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nd7603c6196bf4df78138cb1ef4a727a7 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 Nf2c60b16d9a64b0092b40ac3dccd0eba rdf:first sg:person.014412456557.05
60 rdf:rest N43ae0915cf2d4da5861111a036dc46ea
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
65 schema:name Statistics
66 rdf:type schema:DefinedTerm
67 sg:journal.1294781 schema:issn 0567-7718
68 1614-3116
69 schema:name Acta Mechanica Sinica
70 rdf:type schema:Periodical
71 sg:person.013542561427.46 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
72 schema:familyName Yang
73 schema:givenName Di
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013542561427.46
75 rdf:type schema:Person
76 sg:person.014412456557.05 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
77 schema:familyName Qiu
78 schema:givenName Zhiping
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05
80 rdf:type schema:Person
81 sg:person.07413722043.13 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
82 schema:familyName Elishakoff
83 schema:givenName Isaac
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413722043.13
85 rdf:type schema:Person
86 sg:pub.10.1007/978-3-642-61154-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044860693
87 https://doi.org/10.1007/978-3-642-61154-4
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/978-3-642-68697-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042297086
90 https://doi.org/10.1007/978-3-642-68697-9
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf02088988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048537692
93 https://doi.org/10.1007/bf02088988
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s10409-006-0107-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028698864
96 https://doi.org/10.1007/s10409-006-0107-5
97 rdf:type schema:CreativeWork
98 https://app.dimensions.ai/details/publication/pub.1042297086 schema:CreativeWork
99 https://doi.org/10.1002/nme.636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052210171
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0020-7683(03)00282-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035941935
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0960-0779(00)00102-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007401751
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1017/cbo9780511529658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668642
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1061/(asce)0733-9399(2002)128:10(1024) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057583997
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1061/(asce)0733-9445(1999)125:1(98) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057599428
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1137/1.9781611970906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556260
112 rdf:type schema:CreativeWork
113 https://doi.org/10.2514/2.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013818383
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.255951.f schema:alternateName Florida Atlantic University
116 schema:name Department of Mechanical Engineering, Florida Atlantic University, 33431-0991, Boca Raton, FL, USA
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
119 schema:name Institute of Solid Mechanics, Beihang University, 100083, Beijing, China
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...