Interval analysis method and convex models for impulsive response of structures with uncertain-but-bounded external loads View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-06

AUTHORS

Zhiping Qiu, Xiaojun Wang

ABSTRACT

Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model. More... »

PAGES

265-276

Journal

TITLE

Acta Mechanica Sinica

ISSUE

3

VOLUME

22

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10409-006-0107-5

DOI

http://dx.doi.org/10.1007/s10409-006-0107-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028698864


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beijing University of Aeronautics and Astronautics, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Zhiping", 
        "id": "sg:person.014412456557.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beijing University of Aeronautics and Astronautics, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaojun", 
        "id": "sg:person.015133143544.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133143544.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-460x(73)80275-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000045084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(03)00282-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035941935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(03)00282-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035941935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(96)01211-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050973357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052210171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(1994)120:3(445)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057582622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(1996)122:4(325)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057582981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(1996)122:6(521)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057583013"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-06", 
    "datePublishedReg": "2006-06-01", 
    "description": "Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10409-006-0107-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294781", 
        "issn": [
          "0567-7718", 
          "1614-3116"
        ], 
        "name": "Acta Mechanica Sinica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Interval analysis method and convex models for impulsive response of structures with uncertain-but-bounded external loads", 
    "pagination": "265-276", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "88b6c0f08213bac5d92f5785074eb5b49b44486137f4fcbb002e3026551f6a64"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10409-006-0107-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028698864"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10409-006-0107-5", 
      "https://app.dimensions.ai/details/publication/pub.1028698864"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10409-006-0107-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10409-006-0107-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10409-006-0107-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10409-006-0107-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10409-006-0107-5'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10409-006-0107-5 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nb04b17d73da2463a9d9e80a2608a15d2
4 schema:citation https://doi.org/10.1002/nme.636
5 https://doi.org/10.1016/s0020-7683(03)00282-8
6 https://doi.org/10.1016/s0022-460x(73)80275-5
7 https://doi.org/10.1016/s0045-7825(96)01211-x
8 https://doi.org/10.1061/(asce)0733-9399(1994)120:3(445)
9 https://doi.org/10.1061/(asce)0733-9399(1996)122:4(325)
10 https://doi.org/10.1061/(asce)0733-9399(1996)122:6(521)
11 schema:datePublished 2006-06
12 schema:datePublishedReg 2006-06-01
13 schema:description Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N3c6c1aa353d448f5a8a947ad95b6e991
18 N8f4b987ca58b427694cf6ba993365963
19 sg:journal.1294781
20 schema:name Interval analysis method and convex models for impulsive response of structures with uncertain-but-bounded external loads
21 schema:pagination 265-276
22 schema:productId N3d9d7f4fba334f819cfa9a2c22fd868d
23 N7e22c464cf00483c8d7735d6516fa33b
24 N82ffda317f574147b2b1f36806e4526e
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028698864
26 https://doi.org/10.1007/s10409-006-0107-5
27 schema:sdDatePublished 2019-04-10T19:50
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N8aef77996a504fc481538226c4e5daac
30 schema:url http://link.springer.com/10.1007/s10409-006-0107-5
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N341cc6435f414651ab114fdd9255819a rdf:first sg:person.015133143544.00
35 rdf:rest rdf:nil
36 N3c6c1aa353d448f5a8a947ad95b6e991 schema:volumeNumber 22
37 rdf:type schema:PublicationVolume
38 N3d9d7f4fba334f819cfa9a2c22fd868d schema:name doi
39 schema:value 10.1007/s10409-006-0107-5
40 rdf:type schema:PropertyValue
41 N7e22c464cf00483c8d7735d6516fa33b schema:name dimensions_id
42 schema:value pub.1028698864
43 rdf:type schema:PropertyValue
44 N82ffda317f574147b2b1f36806e4526e schema:name readcube_id
45 schema:value 88b6c0f08213bac5d92f5785074eb5b49b44486137f4fcbb002e3026551f6a64
46 rdf:type schema:PropertyValue
47 N8aef77996a504fc481538226c4e5daac schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N8f4b987ca58b427694cf6ba993365963 schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 Nb04b17d73da2463a9d9e80a2608a15d2 rdf:first sg:person.014412456557.05
52 rdf:rest N341cc6435f414651ab114fdd9255819a
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
57 schema:name Applied Mathematics
58 rdf:type schema:DefinedTerm
59 sg:journal.1294781 schema:issn 0567-7718
60 1614-3116
61 schema:name Acta Mechanica Sinica
62 rdf:type schema:Periodical
63 sg:person.014412456557.05 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
64 schema:familyName Qiu
65 schema:givenName Zhiping
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05
67 rdf:type schema:Person
68 sg:person.015133143544.00 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
69 schema:familyName Wang
70 schema:givenName Xiaojun
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133143544.00
72 rdf:type schema:Person
73 https://doi.org/10.1002/nme.636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052210171
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/s0020-7683(03)00282-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035941935
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/s0022-460x(73)80275-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000045084
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/s0045-7825(96)01211-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050973357
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1061/(asce)0733-9399(1994)120:3(445) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057582622
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1061/(asce)0733-9399(1996)122:4(325) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057582981
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1061/(asce)0733-9399(1996)122:6(521) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057583013
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
88 schema:name Institute of Solid Mechanics, Beijing University of Aeronautics and Astronautics, 100083, Beijing, China
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...