Modified geriatric nutrition risk index as a prognostic predictor of esophageal cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-11-10

AUTHORS

Keita Kouzu, Hironori Tsujimoto, Hidekazu Sugasawa, Yusuke Ishibashi, Kazuo Hase, Yoji Kishi, Hideki Ueno

ABSTRACT

BackgroundThis study aimed to establish a simple and useful prognostic indicator for elderly esophageal cancer patients. We designed the modified geriatric nutrition risk index (mGNRI) using the inverse of C-reactive protein (CRP) instead of albumin and compared its prognostic value with those of the GNRI and other indices.MethodsWe included 128 patients aged > 65 years who underwent esophagectomy for esophageal cancer. We defined mGNRI as (1.489/CRP in mg/dL) + (41.7 × present/ideal body weight) and divided patients into two groups: the low-mGNRI (mGNRI < 70, n = 50) and high-mGNRI (mGNRI ≥ 70, n = 78) groups. We retrospectively examined the relationship between mGNRI and long-term prognosis.ResultsThe low-mGNRI group had more advanced cancer by stage, higher rates of recurrence, and earlier recurrence than the high-mGNRI group. Univariate analysis identified the following factors as significantly associated with poor overall survival (OS): a lower American society of anesthesiologist performance status (ASA-PS), male gender, CRP-albumin ratio ≥ 0.1, CRP ≥ 1.0, low-mGNRI, tumor depth ≥ T3, Charlson comorbidity index ≥ 2, tumor size ≥ 40 mm, and age > 75 years. A low-mGNRI, ASA-PS 3, age > 75 years, and tumor depth ≥ T3 were independent unfavorable prognostic factors for OS. A low-mGNRI was an independent poor prognostic factor for relapse-free survival. We performed model selection analysis to identify the most clinically useful indices; mGNRI was the best predictive model.ConclusionmGNRI in patients with esophageal cancer correlated with early recurrence and was a useful independent prognostic factor. More... »

PAGES

278-287

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10388-020-00795-w

DOI

http://dx.doi.org/10.1007/s10388-020-00795-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1132476779

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33170460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Esophageal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Esophagectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kouzu", 
        "givenName": "Keita", 
        "id": "sg:person.01006713465.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006713465.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsujimoto", 
        "givenName": "Hironori", 
        "id": "sg:person.01022371461.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022371461.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugasawa", 
        "givenName": "Hidekazu", 
        "id": "sg:person.01357636001.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357636001.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishibashi", 
        "givenName": "Yusuke", 
        "id": "sg:person.0672465065.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672465065.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hase", 
        "givenName": "Kazuo", 
        "id": "sg:person.01251324614.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251324614.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishi", 
        "givenName": "Yoji", 
        "id": "sg:person.0651772025.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651772025.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416614.0", 
          "name": [
            "Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueno", 
        "givenName": "Hideki", 
        "id": "sg:person.01053200431.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053200431.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10147-016-0994-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051540543", 
          "https://doi.org/10.1007/s10147-016-0994-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-004-7205-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045424510", 
          "https://doi.org/10.1007/s00268-004-7205-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10120-010-0568-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028038438", 
          "https://doi.org/10.1007/s10120-010-0568-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ejcn.1601208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043237609", 
          "https://doi.org/10.1038/sj.ejcn.1601208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-006-9093-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029936937", 
          "https://doi.org/10.1245/s10434-006-9093-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00384-006-0259-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046118686", 
          "https://doi.org/10.1007/s00384-006-0259-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10388-018-0644-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107553119", 
          "https://doi.org/10.1007/s10388-018-0644-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024729982", 
          "https://doi.org/10.1038/nature07205"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-11-10", 
    "datePublishedReg": "2020-11-10", 
    "description": "BackgroundThis study aimed to establish a simple and useful prognostic indicator for elderly esophageal cancer patients. We designed the modified geriatric nutrition risk index (mGNRI) using the inverse of C-reactive protein (CRP) instead of albumin and compared its prognostic value with those of the GNRI and other indices.MethodsWe included 128 patients aged\u2009>\u200965\u00a0years who underwent esophagectomy for esophageal cancer. We defined mGNRI as (1.489/CRP in mg/dL)\u2009+\u2009(41.7\u2009\u00d7\u2009present/ideal body weight) and divided patients into two groups: the low-mGNRI (mGNRI\u2009<\u200970, n\u2009=\u200950) and high-mGNRI (mGNRI\u2009\u2265\u200970, n\u2009=\u200978) groups. We retrospectively examined the relationship between mGNRI and long-term prognosis.ResultsThe low-mGNRI group had more advanced cancer by stage, higher rates of recurrence, and earlier recurrence than the high-mGNRI group. Univariate analysis identified the following factors as significantly associated with poor overall survival (OS): a lower American society of anesthesiologist performance status (ASA-PS), male gender, CRP-albumin ratio\u2009\u2265\u20090.1, CRP\u2009\u2265\u20091.0, low-mGNRI, tumor depth\u2009\u2265\u2009T3, Charlson comorbidity index\u2009\u2265\u20092, tumor size\u2009\u2265\u200940\u00a0mm, and age\u2009>\u200975\u00a0years. A low-mGNRI, ASA-PS 3, age\u2009>\u200975\u00a0years, and tumor depth\u2009\u2265\u2009T3 were independent unfavorable prognostic factors for OS. A low-mGNRI was an independent poor prognostic factor for relapse-free survival. We performed model selection analysis to identify the most clinically useful indices; mGNRI was the best predictive model.ConclusionmGNRI in patients with esophageal cancer correlated with early recurrence and was a useful independent prognostic factor.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10388-020-00795-w", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033355", 
        "issn": [
          "1612-9059", 
          "1612-9067"
        ], 
        "name": "Esophagus", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "C-reactive protein", 
      "Geriatric Nutrition Risk Index", 
      "Nutrition Risk Index", 
      "overall survival", 
      "prognostic factors", 
      "esophageal cancer", 
      "early recurrence", 
      "tumor depth", 
      "elderly esophageal cancer patients", 
      "useful independent prognostic factor", 
      "independent unfavorable prognostic factor", 
      "independent poor prognostic factor", 
      "Anesthesiologists performance status", 
      "CRP-albumin ratio", 
      "ASA-PS 3", 
      "Charlson Comorbidity Index", 
      "poor prognostic factor", 
      "long-term prognosis", 
      "unfavorable prognostic factor", 
      "relapse-free survival", 
      "independent prognostic factor", 
      "poor overall survival", 
      "lower American Society", 
      "useful prognostic indicator", 
      "esophageal cancer patients", 
      "comorbidity index", 
      "performance status", 
      "advanced cancer", 
      "prognostic predictor", 
      "prognostic value", 
      "tumor size", 
      "prognostic indicator", 
      "cancer patients", 
      "male gender", 
      "BackgroundThis study", 
      "patients", 
      "risk index", 
      "cancer", 
      "recurrence", 
      "American Society", 
      "high rate", 
      "useful index", 
      "survival", 
      "age", 
      "group", 
      "T3", 
      "years", 
      "best predictive model", 
      "index", 
      "esophagectomy", 
      "prognosis", 
      "factors", 
      "MethodsWe", 
      "predictors", 
      "albumin", 
      "status", 
      "gender", 
      "predictive model", 
      "protein", 
      "study", 
      "rate", 
      "analysis", 
      "stage", 
      "indicators", 
      "relationship", 
      "ratio", 
      "values", 
      "size", 
      "society", 
      "model", 
      "depth", 
      "model selection analysis", 
      "selection analysis", 
      "inverse"
    ], 
    "name": "Modified geriatric nutrition risk index as a prognostic predictor of esophageal cancer", 
    "pagination": "278-287", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1132476779"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10388-020-00795-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33170460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10388-020-00795-w", 
      "https://app.dimensions.ai/details/publication/pub.1132476779"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_832.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10388-020-00795-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10388-020-00795-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10388-020-00795-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10388-020-00795-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10388-020-00795-w'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      115 URIs      99 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10388-020-00795-w schema:about N1e6e7e03b7c04977afa4f61ec22ef130
2 N4d6378992c644523b8e4e83df97f1f1b
3 N6735a3a0f5024a6face163c222f22622
4 N70dd3e611e5342c78a694e65909c6edb
5 N803389d5d4474bb7abf5266b653a2ce6
6 Na3d24dc2ce62406182bf2deb6d595b0d
7 Ne6077fae2cc74b5aae75a36a3537f77d
8 Nf1f931a893ff4271a8445b9963b09e72
9 anzsrc-for:11
10 anzsrc-for:1112
11 schema:author Necfa79a9391b486cb43dcf3c91fcb4fa
12 schema:citation sg:pub.10.1007/s00268-004-7205-y
13 sg:pub.10.1007/s00384-006-0259-6
14 sg:pub.10.1007/s10120-010-0568-x
15 sg:pub.10.1007/s10147-016-0994-9
16 sg:pub.10.1007/s10388-018-0644-6
17 sg:pub.10.1038/nature07205
18 sg:pub.10.1038/sj.ejcn.1601208
19 sg:pub.10.1245/s10434-006-9093-x
20 schema:datePublished 2020-11-10
21 schema:datePublishedReg 2020-11-10
22 schema:description BackgroundThis study aimed to establish a simple and useful prognostic indicator for elderly esophageal cancer patients. We designed the modified geriatric nutrition risk index (mGNRI) using the inverse of C-reactive protein (CRP) instead of albumin and compared its prognostic value with those of the GNRI and other indices.MethodsWe included 128 patients aged > 65 years who underwent esophagectomy for esophageal cancer. We defined mGNRI as (1.489/CRP in mg/dL) + (41.7 × present/ideal body weight) and divided patients into two groups: the low-mGNRI (mGNRI < 70, n = 50) and high-mGNRI (mGNRI ≥ 70, n = 78) groups. We retrospectively examined the relationship between mGNRI and long-term prognosis.ResultsThe low-mGNRI group had more advanced cancer by stage, higher rates of recurrence, and earlier recurrence than the high-mGNRI group. Univariate analysis identified the following factors as significantly associated with poor overall survival (OS): a lower American society of anesthesiologist performance status (ASA-PS), male gender, CRP-albumin ratio ≥ 0.1, CRP ≥ 1.0, low-mGNRI, tumor depth ≥ T3, Charlson comorbidity index ≥ 2, tumor size ≥ 40 mm, and age > 75 years. A low-mGNRI, ASA-PS 3, age > 75 years, and tumor depth ≥ T3 were independent unfavorable prognostic factors for OS. A low-mGNRI was an independent poor prognostic factor for relapse-free survival. We performed model selection analysis to identify the most clinically useful indices; mGNRI was the best predictive model.ConclusionmGNRI in patients with esophageal cancer correlated with early recurrence and was a useful independent prognostic factor.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N4587205fbcb54c719e4b2dbe7f17c42c
26 N6610cb3eefda4adfbecb1aa01f2fe7f0
27 sg:journal.1033355
28 schema:keywords ASA-PS 3
29 American Society
30 Anesthesiologists performance status
31 BackgroundThis study
32 C-reactive protein
33 CRP-albumin ratio
34 Charlson Comorbidity Index
35 Geriatric Nutrition Risk Index
36 MethodsWe
37 Nutrition Risk Index
38 T3
39 advanced cancer
40 age
41 albumin
42 analysis
43 best predictive model
44 cancer
45 cancer patients
46 comorbidity index
47 depth
48 early recurrence
49 elderly esophageal cancer patients
50 esophageal cancer
51 esophageal cancer patients
52 esophagectomy
53 factors
54 gender
55 group
56 high rate
57 independent poor prognostic factor
58 independent prognostic factor
59 independent unfavorable prognostic factor
60 index
61 indicators
62 inverse
63 long-term prognosis
64 lower American Society
65 male gender
66 model
67 model selection analysis
68 overall survival
69 patients
70 performance status
71 poor overall survival
72 poor prognostic factor
73 predictive model
74 predictors
75 prognosis
76 prognostic factors
77 prognostic indicator
78 prognostic predictor
79 prognostic value
80 protein
81 rate
82 ratio
83 recurrence
84 relapse-free survival
85 relationship
86 risk index
87 selection analysis
88 size
89 society
90 stage
91 status
92 study
93 survival
94 tumor depth
95 tumor size
96 unfavorable prognostic factor
97 useful independent prognostic factor
98 useful index
99 useful prognostic indicator
100 values
101 years
102 schema:name Modified geriatric nutrition risk index as a prognostic predictor of esophageal cancer
103 schema:pagination 278-287
104 schema:productId N23ebe71e8ae0404ca50f83ad29474e44
105 N7308440986894fbf8ba7e0e327c1cd4e
106 N80f6828da09246c7849d04d1acd17756
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132476779
108 https://doi.org/10.1007/s10388-020-00795-w
109 schema:sdDatePublished 2022-11-24T21:05
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N549b568ced2e47d6b5caaf13fa3a0a22
112 schema:url https://doi.org/10.1007/s10388-020-00795-w
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N1e6e7e03b7c04977afa4f61ec22ef130 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Humans
118 rdf:type schema:DefinedTerm
119 N23ebe71e8ae0404ca50f83ad29474e44 schema:name doi
120 schema:value 10.1007/s10388-020-00795-w
121 rdf:type schema:PropertyValue
122 N245ed953d2e6456b8ffd5876a8d32c3b rdf:first sg:person.01251324614.42
123 rdf:rest Nb2d67d0eca7e4ecc943abc86bf5a1d44
124 N4587205fbcb54c719e4b2dbe7f17c42c schema:issueNumber 2
125 rdf:type schema:PublicationIssue
126 N4d6378992c644523b8e4e83df97f1f1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Esophagectomy
128 rdf:type schema:DefinedTerm
129 N53a1d16d459240f4aed8faf3ce4fdf5d rdf:first sg:person.01053200431.41
130 rdf:rest rdf:nil
131 N549b568ced2e47d6b5caaf13fa3a0a22 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N6066be137d294a7baf47ac967ac41188 rdf:first sg:person.0672465065.31
134 rdf:rest N245ed953d2e6456b8ffd5876a8d32c3b
135 N6610cb3eefda4adfbecb1aa01f2fe7f0 schema:volumeNumber 18
136 rdf:type schema:PublicationVolume
137 N6735a3a0f5024a6face163c222f22622 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Retrospective Studies
139 rdf:type schema:DefinedTerm
140 N70dd3e611e5342c78a694e65909c6edb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Esophageal Neoplasms
142 rdf:type schema:DefinedTerm
143 N7308440986894fbf8ba7e0e327c1cd4e schema:name dimensions_id
144 schema:value pub.1132476779
145 rdf:type schema:PropertyValue
146 N803389d5d4474bb7abf5266b653a2ce6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Neoplasm Recurrence, Local
148 rdf:type schema:DefinedTerm
149 N80f6828da09246c7849d04d1acd17756 schema:name pubmed_id
150 schema:value 33170460
151 rdf:type schema:PropertyValue
152 N9e4b69c4ddfb49efae6129722f7870e6 rdf:first sg:person.01022371461.19
153 rdf:rest Nbc9ed9d099eb4ddfae5cbdc8671b3cc6
154 Na3d24dc2ce62406182bf2deb6d595b0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Prognosis
156 rdf:type schema:DefinedTerm
157 Nb2d67d0eca7e4ecc943abc86bf5a1d44 rdf:first sg:person.0651772025.08
158 rdf:rest N53a1d16d459240f4aed8faf3ce4fdf5d
159 Nbc9ed9d099eb4ddfae5cbdc8671b3cc6 rdf:first sg:person.01357636001.44
160 rdf:rest N6066be137d294a7baf47ac967ac41188
161 Ne6077fae2cc74b5aae75a36a3537f77d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Aged
163 rdf:type schema:DefinedTerm
164 Necfa79a9391b486cb43dcf3c91fcb4fa rdf:first sg:person.01006713465.24
165 rdf:rest N9e4b69c4ddfb49efae6129722f7870e6
166 Nf1f931a893ff4271a8445b9963b09e72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Male
168 rdf:type schema:DefinedTerm
169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
170 schema:name Medical and Health Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
173 schema:name Oncology and Carcinogenesis
174 rdf:type schema:DefinedTerm
175 sg:journal.1033355 schema:issn 1612-9059
176 1612-9067
177 schema:name Esophagus
178 schema:publisher Springer Nature
179 rdf:type schema:Periodical
180 sg:person.01006713465.24 schema:affiliation grid-institutes:grid.416614.0
181 schema:familyName Kouzu
182 schema:givenName Keita
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006713465.24
184 rdf:type schema:Person
185 sg:person.01022371461.19 schema:affiliation grid-institutes:grid.416614.0
186 schema:familyName Tsujimoto
187 schema:givenName Hironori
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022371461.19
189 rdf:type schema:Person
190 sg:person.01053200431.41 schema:affiliation grid-institutes:grid.416614.0
191 schema:familyName Ueno
192 schema:givenName Hideki
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053200431.41
194 rdf:type schema:Person
195 sg:person.01251324614.42 schema:affiliation grid-institutes:grid.416614.0
196 schema:familyName Hase
197 schema:givenName Kazuo
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251324614.42
199 rdf:type schema:Person
200 sg:person.01357636001.44 schema:affiliation grid-institutes:grid.416614.0
201 schema:familyName Sugasawa
202 schema:givenName Hidekazu
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357636001.44
204 rdf:type schema:Person
205 sg:person.0651772025.08 schema:affiliation grid-institutes:grid.416614.0
206 schema:familyName Kishi
207 schema:givenName Yoji
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651772025.08
209 rdf:type schema:Person
210 sg:person.0672465065.31 schema:affiliation grid-institutes:grid.416614.0
211 schema:familyName Ishibashi
212 schema:givenName Yusuke
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672465065.31
214 rdf:type schema:Person
215 sg:pub.10.1007/s00268-004-7205-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045424510
216 https://doi.org/10.1007/s00268-004-7205-y
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s00384-006-0259-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046118686
219 https://doi.org/10.1007/s00384-006-0259-6
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s10120-010-0568-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028038438
222 https://doi.org/10.1007/s10120-010-0568-x
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s10147-016-0994-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051540543
225 https://doi.org/10.1007/s10147-016-0994-9
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s10388-018-0644-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107553119
228 https://doi.org/10.1007/s10388-018-0644-6
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nature07205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024729982
231 https://doi.org/10.1038/nature07205
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/sj.ejcn.1601208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043237609
234 https://doi.org/10.1038/sj.ejcn.1601208
235 rdf:type schema:CreativeWork
236 sg:pub.10.1245/s10434-006-9093-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936937
237 https://doi.org/10.1245/s10434-006-9093-x
238 rdf:type schema:CreativeWork
239 grid-institutes:grid.416614.0 schema:alternateName Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan
240 schema:name Department of Surgery, National Defense Medical College, 3-2 Namiki, 359-8513, Tokorozawa, Saitama, Japan
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...