Time series analysis and long short-term memory neural network to predict landslide displacement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Beibei Yang, Kunlong Yin, Suzanne Lacasse, Zhongqiang Liu

ABSTRACT

A good prediction of landslide displacement is an essential component for implementing an early warning system. In the Three Gorges Reservoir Area (TGRA), many landslides deform distinctly and in steps from April to September each year under the influence of seasonal rainfall and periodic fluctuation in reservoir water level. The sliding becomes more uniform again from October to April. This landslide deformation pattern leads to accumulated displacement versus time showing a step-wise curve. Most of the existing predictive models express static relationships only. However, the evolution of a landslide is a complex nonlinear dynamic process. This paper proposes a dynamic model to predict landslide displacement, based on time series analysis and long short-term memory (LSTM) neural network. The accumulated displacement was decomposed into a trend term and a periodic term in the time series analysis. A cubic polynomial function was selected to predict the trend displacement. By analyzing the relationships between landslide deformation, rainfall, and reservoir water level, a LSTM model was used to predict the periodic displacement. The LSTM approach was found to properly model the dynamic characteristics of landslides than static models, and make full use of the historical information. The performance of the model was validated with the observations of two step-wise landslides in the TGRA, the Baishuihe landslide and Bazimen landslide. The application of the model to those two landslides demonstrates that the LSTM model provides a good representation of the measured displacements and gives a more reliable prediction of landslide displacement than the static support vector machine (SVM) model. It is concluded that the proposed model can be used to effectively predict the displacement of step-wise landslides in the TGRA. More... »

PAGES

677-694

References to SciGraph publications

  • 2017-06. Establishment of a deformation forecasting model for a step-like landslide based on decision tree C5.0 and two-step cluster algorithms: a case study in the Three Gorges Reservoir area, China in LANDSLIDES
  • 2004-08. A tutorial on support vector regression in STATISTICS AND COMPUTING
  • 2018-07. Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide (Sichuan, China) in LANDSLIDES
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • 2005-07. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain) in LANDSLIDES
  • 2018-08. Trend and spatiotemporal distribution of fatal landslides triggered by non-seismic effects in China in LANDSLIDES
  • 2018-11. Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method in LANDSLIDES
  • 2018-10. Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models in LANDSLIDES
  • 2017-12. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China in LANDSLIDES
  • 2016-10. Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory in ENVIRONMENTAL EARTH SCIENCES
  • 2014-10. Integration of a limit-equilibrium model into a landslide early warning system in LANDSLIDES
  • 2018-02. Identifying the Main Control Factors for Different Deformation Stages of Landslide in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2017-08. Annual variation of landslide stability under the effect of water level fluctuation and rainfall in the Three Gorges Reservoir, China in ENVIRONMENTAL EARTH SCIENCES
  • 2014-10. Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches in LANDSLIDES
  • 2016-08. Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors in LANDSLIDES
  • 2016-12. Fatal landslides in Europe in LANDSLIDES
  • 2018-03. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model in LANDSLIDES
  • 2013-04. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China in LANDSLIDES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10346-018-01127-x

    DOI

    http://dx.doi.org/10.1007/s10346-018-01127-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111434141


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Norwegian Geotechnical Institute", 
              "id": "https://www.grid.ac/institutes/grid.425894.6", 
              "name": [
                "Faculty of Engineering, China University of Geosciences, 430074, Wuhan, China", 
                "Norwegian Geotechnical Institute, 0806, Oslo, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Beibei", 
            "id": "sg:person.015611523773.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015611523773.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "China University of Geosciences", 
              "id": "https://www.grid.ac/institutes/grid.162107.3", 
              "name": [
                "Faculty of Engineering, China University of Geosciences, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yin", 
            "givenName": "Kunlong", 
            "id": "sg:person.012333123617.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012333123617.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Norwegian Geotechnical Institute", 
              "id": "https://www.grid.ac/institutes/grid.425894.6", 
              "name": [
                "Norwegian Geotechnical Institute, 0806, Oslo, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lacasse", 
            "givenName": "Suzanne", 
            "id": "sg:person.01372216343.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372216343.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Norwegian Geotechnical Institute", 
              "id": "https://www.grid.ac/institutes/grid.425894.6", 
              "name": [
                "Norwegian Geotechnical Institute, 0806, Oslo, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zhongqiang", 
            "id": "sg:person.013112313525.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013112313525.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10346-012-0326-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000583627", 
              "https://doi.org/10.1007/s10346-012-0326-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jrmge.2016.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000846597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:stco.0000035301.49549.88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000991887", 
              "https://doi.org/10.1023/b:stco.0000035301.49549.88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2014.11.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001896032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-013-0443-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005252481", 
              "https://doi.org/10.1007/s10346-013-0443-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2014.11.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009254589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-013-0416-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010017483", 
              "https://doi.org/10.1007/s10346-013-0416-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geomorph.2015.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010299584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2017.01.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014194829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2013.12.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015130008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470012659.ch1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017513006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-016-0689-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018391951", 
              "https://doi.org/10.1007/s10346-016-0689-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geomorph.2016.02.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022239228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-016-6133-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028435782", 
              "https://doi.org/10.1007/s12665-016-6133-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-016-6133-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028435782", 
              "https://doi.org/10.1007/s12665-016-6133-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2002jb002160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030370285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038140272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2016.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038643593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-005-0049-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042714628", 
              "https://doi.org/10.1007/s10346-005-0049-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-005-0049-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042714628", 
              "https://doi.org/10.1007/s10346-005-0049-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-005-0049-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042714628", 
              "https://doi.org/10.1007/s10346-005-0049-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-555x(01)00122-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042987302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trc.2015.03.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043164377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2009.07.064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045853436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-015-0596-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048642655", 
              "https://doi.org/10.1007/s10346-015-0596-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2010.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049878459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijforecast.2006.03.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052401159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gji/ggu017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059637123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.279181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2004.837418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061799367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-017-0804-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084024466", 
              "https://doi.org/10.1007/s10346-017-0804-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-017-0804-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084024466", 
              "https://doi.org/10.1007/s10346-017-0804-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-017-6898-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091244735", 
              "https://doi.org/10.1007/s12665-017-6898-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-017-6898-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091244735", 
              "https://doi.org/10.1007/s12665-017-6898-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-017-0883-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091427676", 
              "https://doi.org/10.1007/s10346-017-0883-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-017-0340-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091491569", 
              "https://doi.org/10.1007/s10706-017-0340-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-017-0907-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092151651", 
              "https://doi.org/10.1007/s10346-017-0907-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2017.10.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092614442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2017.11.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093023010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.2013.6638947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095157363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mhs.1995.494215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095205003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/itsc.2012.6338665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095493155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/nhess-18-31-2018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100159663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/nhess-18-31-2018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100159663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/nhess-18-397-2018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100650823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/nhess-18-397-2018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100650823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-018-0953-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101140938", 
              "https://doi.org/10.1007/s10346-018-0953-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-018-0953-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101140938", 
              "https://doi.org/10.1007/s10346-018-0953-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-018-0953-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101140938", 
              "https://doi.org/10.1007/s10346-018-0953-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.earscirev.2018.03.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101398943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/nhess-18-1187-2018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103429148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-018-1007-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103952702", 
              "https://doi.org/10.1007/s10346-018-1007-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-018-1007-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103952702", 
              "https://doi.org/10.1007/s10346-018-1007-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-018-1020-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104285452", 
              "https://doi.org/10.1007/s10346-018-1020-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-018-1022-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104494103", 
              "https://doi.org/10.1007/s10346-018-1022-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/nhess-18-2161-2018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106283382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470012659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108390890"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "A good prediction of landslide displacement is an essential component for implementing an early warning system. In the Three Gorges Reservoir Area (TGRA), many landslides deform distinctly and in steps from April to September each year under the influence of seasonal rainfall and periodic fluctuation in reservoir water level. The sliding becomes more uniform again from October to April. This landslide deformation pattern leads to accumulated displacement versus time showing a step-wise curve. Most of the existing predictive models express static relationships only. However, the evolution of a landslide is a complex nonlinear dynamic process. This paper proposes a dynamic model to predict landslide displacement, based on time series analysis and long short-term memory (LSTM) neural network. The accumulated displacement was decomposed into a trend term and a periodic term in the time series analysis. A cubic polynomial function was selected to predict the trend displacement. By analyzing the relationships between landslide deformation, rainfall, and reservoir water level, a LSTM model was used to predict the periodic displacement. The LSTM approach was found to properly model the dynamic characteristics of landslides than static models, and make full use of the historical information. The performance of the model was validated with the observations of two step-wise landslides in the TGRA, the Baishuihe landslide and Bazimen landslide. The application of the model to those two landslides demonstrates that the LSTM model provides a good representation of the measured displacements and gives a more reliable prediction of landslide displacement than the static support vector machine (SVM) model. It is concluded that the proposed model can be used to effectively predict the displacement of step-wise landslides in the TGRA.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10346-018-01127-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052089", 
            "issn": [
              "1612-510X", 
              "1612-5118"
            ], 
            "name": "Landslides", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Time series analysis and long short-term memory neural network to predict landslide displacement", 
        "pagination": "677-694", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "63c2ab90c64918e70fe5bc02b520a8017e519cf91ff45ed03eaf922e0e9e54e1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10346-018-01127-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111434141"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10346-018-01127-x", 
          "https://app.dimensions.ai/details/publication/pub.1111434141"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10346-018-01127-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10346-018-01127-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10346-018-01127-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10346-018-01127-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10346-018-01127-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    248 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10346-018-01127-x schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author Nb5a75b2617004f729a44d56c95bd3a8a
    4 schema:citation sg:pub.10.1007/bf00994018
    5 sg:pub.10.1007/s10346-005-0049-1
    6 sg:pub.10.1007/s10346-012-0326-8
    7 sg:pub.10.1007/s10346-013-0416-2
    8 sg:pub.10.1007/s10346-013-0443-z
    9 sg:pub.10.1007/s10346-015-0596-z
    10 sg:pub.10.1007/s10346-016-0689-3
    11 sg:pub.10.1007/s10346-017-0804-0
    12 sg:pub.10.1007/s10346-017-0883-y
    13 sg:pub.10.1007/s10346-017-0907-7
    14 sg:pub.10.1007/s10346-018-0953-9
    15 sg:pub.10.1007/s10346-018-1007-z
    16 sg:pub.10.1007/s10346-018-1020-2
    17 sg:pub.10.1007/s10346-018-1022-0
    18 sg:pub.10.1007/s10706-017-0340-7
    19 sg:pub.10.1007/s12665-016-6133-0
    20 sg:pub.10.1007/s12665-017-6898-9
    21 sg:pub.10.1023/b:stco.0000035301.49549.88
    22 https://doi.org/10.1002/9780470012659
    23 https://doi.org/10.1002/9780470012659.ch1
    24 https://doi.org/10.1016/j.cageo.2017.10.013
    25 https://doi.org/10.1016/j.cageo.2017.11.019
    26 https://doi.org/10.1016/j.earscirev.2018.03.001
    27 https://doi.org/10.1016/j.enggeo.2013.12.017
    28 https://doi.org/10.1016/j.enggeo.2014.11.008
    29 https://doi.org/10.1016/j.enggeo.2014.11.014
    30 https://doi.org/10.1016/j.enggeo.2016.02.009
    31 https://doi.org/10.1016/j.enggeo.2017.01.016
    32 https://doi.org/10.1016/j.eswa.2009.07.064
    33 https://doi.org/10.1016/j.geomorph.2015.02.013
    34 https://doi.org/10.1016/j.geomorph.2016.02.012
    35 https://doi.org/10.1016/j.ijforecast.2006.03.001
    36 https://doi.org/10.1016/j.ijrmms.2010.07.001
    37 https://doi.org/10.1016/j.jrmge.2016.08.001
    38 https://doi.org/10.1016/j.trc.2015.03.014
    39 https://doi.org/10.1016/s0169-555x(01)00122-2
    40 https://doi.org/10.1029/2002jb002160
    41 https://doi.org/10.1093/gji/ggu017
    42 https://doi.org/10.1109/72.279181
    43 https://doi.org/10.1109/icassp.2013.6638947
    44 https://doi.org/10.1109/itsc.2012.6338665
    45 https://doi.org/10.1109/mhs.1995.494215
    46 https://doi.org/10.1109/tsp.2004.837418
    47 https://doi.org/10.1162/neco.1997.9.8.1735
    48 https://doi.org/10.5194/nhess-18-1187-2018
    49 https://doi.org/10.5194/nhess-18-2161-2018
    50 https://doi.org/10.5194/nhess-18-31-2018
    51 https://doi.org/10.5194/nhess-18-397-2018
    52 schema:datePublished 2019-04
    53 schema:datePublishedReg 2019-04-01
    54 schema:description A good prediction of landslide displacement is an essential component for implementing an early warning system. In the Three Gorges Reservoir Area (TGRA), many landslides deform distinctly and in steps from April to September each year under the influence of seasonal rainfall and periodic fluctuation in reservoir water level. The sliding becomes more uniform again from October to April. This landslide deformation pattern leads to accumulated displacement versus time showing a step-wise curve. Most of the existing predictive models express static relationships only. However, the evolution of a landslide is a complex nonlinear dynamic process. This paper proposes a dynamic model to predict landslide displacement, based on time series analysis and long short-term memory (LSTM) neural network. The accumulated displacement was decomposed into a trend term and a periodic term in the time series analysis. A cubic polynomial function was selected to predict the trend displacement. By analyzing the relationships between landslide deformation, rainfall, and reservoir water level, a LSTM model was used to predict the periodic displacement. The LSTM approach was found to properly model the dynamic characteristics of landslides than static models, and make full use of the historical information. The performance of the model was validated with the observations of two step-wise landslides in the TGRA, the Baishuihe landslide and Bazimen landslide. The application of the model to those two landslides demonstrates that the LSTM model provides a good representation of the measured displacements and gives a more reliable prediction of landslide displacement than the static support vector machine (SVM) model. It is concluded that the proposed model can be used to effectively predict the displacement of step-wise landslides in the TGRA.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree false
    58 schema:isPartOf N3b3ec0eaf98644fa83c5e5f7fe3870db
    59 N8d4ba02c56764886b5595ec40fab6901
    60 sg:journal.1052089
    61 schema:name Time series analysis and long short-term memory neural network to predict landslide displacement
    62 schema:pagination 677-694
    63 schema:productId N24a1c744440a4b24a67732e9ef39ca16
    64 N2cadd3e1d26d4695a88f12914efd299d
    65 N54a608a34cf54d8f840ad36abb49f51c
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111434141
    67 https://doi.org/10.1007/s10346-018-01127-x
    68 schema:sdDatePublished 2019-04-11T14:00
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Na1e3bf456615490ab2019285348e2598
    71 schema:url https://link.springer.com/10.1007%2Fs10346-018-01127-x
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N24a1c744440a4b24a67732e9ef39ca16 schema:name doi
    76 schema:value 10.1007/s10346-018-01127-x
    77 rdf:type schema:PropertyValue
    78 N2cadd3e1d26d4695a88f12914efd299d schema:name readcube_id
    79 schema:value 63c2ab90c64918e70fe5bc02b520a8017e519cf91ff45ed03eaf922e0e9e54e1
    80 rdf:type schema:PropertyValue
    81 N38d238e7169d413d843e652a9cc105d6 rdf:first sg:person.01372216343.59
    82 rdf:rest Ne282954c58c5481ca555a858d20f51e4
    83 N3b3ec0eaf98644fa83c5e5f7fe3870db schema:issueNumber 4
    84 rdf:type schema:PublicationIssue
    85 N48865e97241f448c90e178630253c716 rdf:first sg:person.012333123617.01
    86 rdf:rest N38d238e7169d413d843e652a9cc105d6
    87 N54a608a34cf54d8f840ad36abb49f51c schema:name dimensions_id
    88 schema:value pub.1111434141
    89 rdf:type schema:PropertyValue
    90 N8d4ba02c56764886b5595ec40fab6901 schema:volumeNumber 16
    91 rdf:type schema:PublicationVolume
    92 Na1e3bf456615490ab2019285348e2598 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 Nb5a75b2617004f729a44d56c95bd3a8a rdf:first sg:person.015611523773.89
    95 rdf:rest N48865e97241f448c90e178630253c716
    96 Ne282954c58c5481ca555a858d20f51e4 rdf:first sg:person.013112313525.83
    97 rdf:rest rdf:nil
    98 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Earth Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Physical Geography and Environmental Geoscience
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1052089 schema:issn 1612-510X
    105 1612-5118
    106 schema:name Landslides
    107 rdf:type schema:Periodical
    108 sg:person.012333123617.01 schema:affiliation https://www.grid.ac/institutes/grid.162107.3
    109 schema:familyName Yin
    110 schema:givenName Kunlong
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012333123617.01
    112 rdf:type schema:Person
    113 sg:person.013112313525.83 schema:affiliation https://www.grid.ac/institutes/grid.425894.6
    114 schema:familyName Liu
    115 schema:givenName Zhongqiang
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013112313525.83
    117 rdf:type schema:Person
    118 sg:person.01372216343.59 schema:affiliation https://www.grid.ac/institutes/grid.425894.6
    119 schema:familyName Lacasse
    120 schema:givenName Suzanne
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372216343.59
    122 rdf:type schema:Person
    123 sg:person.015611523773.89 schema:affiliation https://www.grid.ac/institutes/grid.425894.6
    124 schema:familyName Yang
    125 schema:givenName Beibei
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015611523773.89
    127 rdf:type schema:Person
    128 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    129 https://doi.org/10.1007/bf00994018
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s10346-005-0049-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042714628
    132 https://doi.org/10.1007/s10346-005-0049-1
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s10346-012-0326-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000583627
    135 https://doi.org/10.1007/s10346-012-0326-8
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s10346-013-0416-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010017483
    138 https://doi.org/10.1007/s10346-013-0416-2
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s10346-013-0443-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005252481
    141 https://doi.org/10.1007/s10346-013-0443-z
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s10346-015-0596-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048642655
    144 https://doi.org/10.1007/s10346-015-0596-z
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s10346-016-0689-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018391951
    147 https://doi.org/10.1007/s10346-016-0689-3
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s10346-017-0804-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084024466
    150 https://doi.org/10.1007/s10346-017-0804-0
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10346-017-0883-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091427676
    153 https://doi.org/10.1007/s10346-017-0883-y
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s10346-017-0907-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092151651
    156 https://doi.org/10.1007/s10346-017-0907-7
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10346-018-0953-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101140938
    159 https://doi.org/10.1007/s10346-018-0953-9
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s10346-018-1007-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103952702
    162 https://doi.org/10.1007/s10346-018-1007-z
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10346-018-1020-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104285452
    165 https://doi.org/10.1007/s10346-018-1020-2
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s10346-018-1022-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104494103
    168 https://doi.org/10.1007/s10346-018-1022-0
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10706-017-0340-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091491569
    171 https://doi.org/10.1007/s10706-017-0340-7
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s12665-016-6133-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028435782
    174 https://doi.org/10.1007/s12665-016-6133-0
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s12665-017-6898-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091244735
    177 https://doi.org/10.1007/s12665-017-6898-9
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1023/b:stco.0000035301.49549.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000991887
    180 https://doi.org/10.1023/b:stco.0000035301.49549.88
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1002/9780470012659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108390890
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1002/9780470012659.ch1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017513006
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.cageo.2017.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092614442
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.cageo.2017.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093023010
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.earscirev.2018.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101398943
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.enggeo.2013.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015130008
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.enggeo.2014.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001896032
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.enggeo.2014.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009254589
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.enggeo.2016.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038643593
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.enggeo.2017.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014194829
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.eswa.2009.07.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045853436
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.geomorph.2015.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010299584
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.geomorph.2016.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022239228
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.ijforecast.2006.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052401159
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.ijrmms.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049878459
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.jrmge.2016.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000846597
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.trc.2015.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043164377
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/s0169-555x(01)00122-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042987302
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1029/2002jb002160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030370285
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1093/gji/ggu017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059637123
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1109/72.279181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218416
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1109/icassp.2013.6638947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095157363
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1109/itsc.2012.6338665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095493155
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1109/mhs.1995.494215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095205003
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1109/tsp.2004.837418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799367
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.5194/nhess-18-1187-2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103429148
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.5194/nhess-18-2161-2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106283382
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.5194/nhess-18-31-2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100159663
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.5194/nhess-18-397-2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100650823
    241 rdf:type schema:CreativeWork
    242 https://www.grid.ac/institutes/grid.162107.3 schema:alternateName China University of Geosciences
    243 schema:name Faculty of Engineering, China University of Geosciences, 430074, Wuhan, China
    244 rdf:type schema:Organization
    245 https://www.grid.ac/institutes/grid.425894.6 schema:alternateName Norwegian Geotechnical Institute
    246 schema:name Faculty of Engineering, China University of Geosciences, 430074, Wuhan, China
    247 Norwegian Geotechnical Institute, 0806, Oslo, Norway
    248 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...