Are real-world shallow landslides reproducible by physically-based models? Four test cases in the Laternser valley, Vorarlberg (Austria) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Thomas Zieher, Barbara Schneider-Muntau, Martin Mergili

ABSTRACT

In contrast to the complex nature of slope failures, physically-based slope stability models rely on simplified representations of landslide geometry. Depending on the modelling approach, landslide geometry is reduced to a slope-parallel layer of infinite length and width (e.g., the infinite slope stability model), a concatenation of rigid bodies (e.g., Janbu’s model), or a 3D representation of the slope failure (e.g., Hovland’s model). In this paper, the applicability of four slope stability models is tested at four shallow landslide sites where information on soil material and landslide geometry is available. Soil samples were collected in the field for conducting respective laboratory tests. Landslide geometry was extracted from pre- and post-event digital terrain models derived from airborne laser scanning. Results for fully saturated conditions suggest that a more complex representation of landslide geometry leads to increasingly stable conditions as predicted by the respective models. Using the maximum landslide depth and the median slope angle of the sliding surfaces, the infinite slope stability model correctly predicts slope failures for all test sites. Applying a 2D model for the slope failures, only two test sites are predicted to fail while the two other remain stable. Based on 3D models, none of the slope failures are predicted correctly. The differing results may be explained by the stabilizing effects of cohesion in shallower parts of the landslides. These parts are better represented in models which include a more detailed landslide geometry. Hence, comparing the results of the applied models, the infinite slope stability model generally yields a lower factor of safety due to the overestimation of landslide depth and volume. This simple approach is considered feasible for computing a regional overview of slope stability. For the local scale, more detailed studies including comprehensive material sampling and testing as well as regolith depth measurements are necessary. More... »

PAGES

2009-2023

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10346-017-0840-9

DOI

http://dx.doi.org/10.1007/s10346-017-0840-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086098086


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Interdisciplinary Mountain Research", 
          "id": "https://www.grid.ac/institutes/grid.475762.5", 
          "name": [
            "Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Technikerstra\u00dfe 21a, 6020, Innsbruck, Austria", 
            "Institute of Geography, University of Innsbruck, Innrain 52f, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zieher", 
        "givenName": "Thomas", 
        "id": "sg:person.07452566353.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452566353.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit of Geotechnical and Tunnel Engineering, Institute of Infrastructure, University of Innsbruck, Technikerstra\u00dfe 13, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schneider-Muntau", 
        "givenName": "Barbara", 
        "id": "sg:person.011612630521.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011612630521.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute of Applied Geology, BOKU University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Stra\u00dfe 82, 1190, Vienna, Austria", 
            "Geomorphological Systems and Risk Research, Department of Geography and Regional Research, University of Vienna, Universit\u00e4tsstra\u00dfe 7, 1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mergili", 
        "givenName": "Martin", 
        "id": "sg:person.01206135617.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206135617.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1139/t93-089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003661703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2013.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008501686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-016-0783-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009385408", 
          "https://doi.org/10.1007/s10346-016-0783-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-016-0783-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009385408", 
          "https://doi.org/10.1007/s10346-016-0783-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2004.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015999214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.3360090311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019827676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-11-1927-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020670293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-005-0023-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033204177", 
          "https://doi.org/10.1007/s10346-005-0023-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-005-0023-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033204177", 
          "https://doi.org/10.1007/s10346-005-0023-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2012.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033406252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2006.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034726649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:nhaz.0000037036.01850.0d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036266059", 
          "https://doi.org/10.1023/b:nhaz.0000037036.01850.0d"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2016.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037268459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-013-0436-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040648719", 
          "https://doi.org/10.1007/s10346-013-0436-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008wr007450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040699738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-015-0670-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041676507", 
          "https://doi.org/10.1007/s10346-015-0670-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.1989.tb02221.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043365092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/geot.201400019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045022998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-008-0132-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049990423", 
          "https://doi.org/10.1007/s10346-008-0132-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-008-0132-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049990423", 
          "https://doi.org/10.1007/s10346-008-0132-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jappgeo.2006.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052592376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1981.11918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061444684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.30503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064896816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1955.5.1.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068208716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1965.15.1.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068209049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1987.37.1.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068210161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00254-002-0655-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086068379", 
          "https://doi.org/10.1007/s00254-002-0655-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "In contrast to the complex nature of slope failures, physically-based slope stability models rely on simplified representations of landslide geometry. Depending on the modelling approach, landslide geometry is reduced to a slope-parallel layer of infinite length and width (e.g., the infinite slope stability model), a concatenation of rigid bodies (e.g., Janbu\u2019s model), or a 3D representation of the slope failure (e.g., Hovland\u2019s model). In this paper, the applicability of four slope stability models is tested at four shallow landslide sites where information on soil material and landslide geometry is available. Soil samples were collected in the field for conducting respective laboratory tests. Landslide geometry was extracted from pre- and post-event digital terrain models derived from airborne laser scanning. Results for fully saturated conditions suggest that a more complex representation of landslide geometry leads to increasingly stable conditions as predicted by the respective models. Using the maximum landslide depth and the median slope angle of the sliding surfaces, the infinite slope stability model correctly predicts slope failures for all test sites. Applying a 2D model for the slope failures, only two test sites are predicted to fail while the two other remain stable. Based on 3D models, none of the slope failures are predicted correctly. The differing results may be explained by the stabilizing effects of cohesion in shallower parts of the landslides. These parts are better represented in models which include a more detailed landslide geometry. Hence, comparing the results of the applied models, the infinite slope stability model generally yields a lower factor of safety due to the overestimation of landslide depth and volume. This simple approach is considered feasible for computing a regional overview of slope stability. For the local scale, more detailed studies including comprehensive material sampling and testing as well as regolith depth measurements are necessary.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10346-017-0840-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052089", 
        "issn": [
          "1612-510X", 
          "1612-5118"
        ], 
        "name": "Landslides", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Are real-world shallow landslides reproducible by physically-based models? Four test cases in the Laternser valley, Vorarlberg (Austria)", 
    "pagination": "2009-2023", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "182b80c20eb763a8b8b3dafa5ec62f6886637802ca6a8333a1a1c74c01b21fb7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10346-017-0840-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086098086"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10346-017-0840-9", 
      "https://app.dimensions.ai/details/publication/pub.1086098086"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89819_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10346-017-0840-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10346-017-0840-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10346-017-0840-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10346-017-0840-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10346-017-0840-9'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10346-017-0840-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nadd005d9673a48a695e448d919ae30d3
4 schema:citation sg:pub.10.1007/s00254-002-0655-3
5 sg:pub.10.1007/s10346-005-0023-y
6 sg:pub.10.1007/s10346-008-0132-5
7 sg:pub.10.1007/s10346-013-0436-y
8 sg:pub.10.1007/s10346-015-0670-6
9 sg:pub.10.1007/s10346-016-0783-6
10 sg:pub.10.1023/b:nhaz.0000037036.01850.0d
11 https://doi.org/10.1002/geot.201400019
12 https://doi.org/10.1002/hyp.3360090311
13 https://doi.org/10.1016/j.compgeo.2004.03.003
14 https://doi.org/10.1016/j.compgeo.2006.07.003
15 https://doi.org/10.1016/j.geomorph.2012.06.027
16 https://doi.org/10.1016/j.geomorph.2013.10.008
17 https://doi.org/10.1016/j.geomorph.2016.02.008
18 https://doi.org/10.1016/j.jappgeo.2006.12.003
19 https://doi.org/10.1029/2008wr007450
20 https://doi.org/10.1109/proc.1981.11918
21 https://doi.org/10.1111/j.1365-2478.1989.tb02221.x
22 https://doi.org/10.1139/t93-089
23 https://doi.org/10.13031/2013.30503
24 https://doi.org/10.1680/geot.1955.5.1.7
25 https://doi.org/10.1680/geot.1965.15.1.79
26 https://doi.org/10.1680/geot.1987.37.1.113
27 https://doi.org/10.5194/nhess-11-1927-2011
28 schema:datePublished 2017-12
29 schema:datePublishedReg 2017-12-01
30 schema:description In contrast to the complex nature of slope failures, physically-based slope stability models rely on simplified representations of landslide geometry. Depending on the modelling approach, landslide geometry is reduced to a slope-parallel layer of infinite length and width (e.g., the infinite slope stability model), a concatenation of rigid bodies (e.g., Janbu’s model), or a 3D representation of the slope failure (e.g., Hovland’s model). In this paper, the applicability of four slope stability models is tested at four shallow landslide sites where information on soil material and landslide geometry is available. Soil samples were collected in the field for conducting respective laboratory tests. Landslide geometry was extracted from pre- and post-event digital terrain models derived from airborne laser scanning. Results for fully saturated conditions suggest that a more complex representation of landslide geometry leads to increasingly stable conditions as predicted by the respective models. Using the maximum landslide depth and the median slope angle of the sliding surfaces, the infinite slope stability model correctly predicts slope failures for all test sites. Applying a 2D model for the slope failures, only two test sites are predicted to fail while the two other remain stable. Based on 3D models, none of the slope failures are predicted correctly. The differing results may be explained by the stabilizing effects of cohesion in shallower parts of the landslides. These parts are better represented in models which include a more detailed landslide geometry. Hence, comparing the results of the applied models, the infinite slope stability model generally yields a lower factor of safety due to the overestimation of landslide depth and volume. This simple approach is considered feasible for computing a regional overview of slope stability. For the local scale, more detailed studies including comprehensive material sampling and testing as well as regolith depth measurements are necessary.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N61f3ab779d094ad988eb80d60c6aa426
35 Ndbef5b0399214cfb89c467f2819f7586
36 sg:journal.1052089
37 schema:name Are real-world shallow landslides reproducible by physically-based models? Four test cases in the Laternser valley, Vorarlberg (Austria)
38 schema:pagination 2009-2023
39 schema:productId N0ed4e1b80fa848c4ba6105dc7a07c0d3
40 N5b28968a34964516baf2850b901b3bb3
41 Ncc5bb325540a49648736bdbd38afc47c
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086098086
43 https://doi.org/10.1007/s10346-017-0840-9
44 schema:sdDatePublished 2019-04-11T10:01
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N9a047f4d469c4fba8597ffbefe403fb0
47 schema:url https://link.springer.com/10.1007%2Fs10346-017-0840-9
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0ed4e1b80fa848c4ba6105dc7a07c0d3 schema:name dimensions_id
52 schema:value pub.1086098086
53 rdf:type schema:PropertyValue
54 N179fe98608d546faa936e28ea69d5c09 rdf:first sg:person.01206135617.99
55 rdf:rest rdf:nil
56 N5b28968a34964516baf2850b901b3bb3 schema:name doi
57 schema:value 10.1007/s10346-017-0840-9
58 rdf:type schema:PropertyValue
59 N61f3ab779d094ad988eb80d60c6aa426 schema:issueNumber 6
60 rdf:type schema:PublicationIssue
61 N93a5c8393e1e456988a208ea4a838b9d schema:name Unit of Geotechnical and Tunnel Engineering, Institute of Infrastructure, University of Innsbruck, Technikerstraße 13, 6020, Innsbruck, Austria
62 rdf:type schema:Organization
63 N9a047f4d469c4fba8597ffbefe403fb0 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nadd005d9673a48a695e448d919ae30d3 rdf:first sg:person.07452566353.55
66 rdf:rest Naeb5b9f0d26142589d82c2c845be622d
67 Naeb5b9f0d26142589d82c2c845be622d rdf:first sg:person.011612630521.39
68 rdf:rest N179fe98608d546faa936e28ea69d5c09
69 Ncc5bb325540a49648736bdbd38afc47c schema:name readcube_id
70 schema:value 182b80c20eb763a8b8b3dafa5ec62f6886637802ca6a8333a1a1c74c01b21fb7
71 rdf:type schema:PropertyValue
72 Ndbef5b0399214cfb89c467f2819f7586 schema:volumeNumber 14
73 rdf:type schema:PublicationVolume
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
78 schema:name Pure Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1052089 schema:issn 1612-510X
81 1612-5118
82 schema:name Landslides
83 rdf:type schema:Periodical
84 sg:person.011612630521.39 schema:affiliation N93a5c8393e1e456988a208ea4a838b9d
85 schema:familyName Schneider-Muntau
86 schema:givenName Barbara
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011612630521.39
88 rdf:type schema:Person
89 sg:person.01206135617.99 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
90 schema:familyName Mergili
91 schema:givenName Martin
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206135617.99
93 rdf:type schema:Person
94 sg:person.07452566353.55 schema:affiliation https://www.grid.ac/institutes/grid.475762.5
95 schema:familyName Zieher
96 schema:givenName Thomas
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452566353.55
98 rdf:type schema:Person
99 sg:pub.10.1007/s00254-002-0655-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086068379
100 https://doi.org/10.1007/s00254-002-0655-3
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10346-005-0023-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033204177
103 https://doi.org/10.1007/s10346-005-0023-y
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s10346-008-0132-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049990423
106 https://doi.org/10.1007/s10346-008-0132-5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10346-013-0436-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040648719
109 https://doi.org/10.1007/s10346-013-0436-y
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10346-015-0670-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041676507
112 https://doi.org/10.1007/s10346-015-0670-6
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10346-016-0783-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009385408
115 https://doi.org/10.1007/s10346-016-0783-6
116 rdf:type schema:CreativeWork
117 sg:pub.10.1023/b:nhaz.0000037036.01850.0d schema:sameAs https://app.dimensions.ai/details/publication/pub.1036266059
118 https://doi.org/10.1023/b:nhaz.0000037036.01850.0d
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/geot.201400019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045022998
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/hyp.3360090311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019827676
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.compgeo.2004.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015999214
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.compgeo.2006.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034726649
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.geomorph.2012.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033406252
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.geomorph.2013.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008501686
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.geomorph.2016.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037268459
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jappgeo.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052592376
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1029/2008wr007450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040699738
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/proc.1981.11918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061444684
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1111/j.1365-2478.1989.tb02221.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043365092
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1139/t93-089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003661703
143 rdf:type schema:CreativeWork
144 https://doi.org/10.13031/2013.30503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064896816
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1680/geot.1955.5.1.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068208716
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1680/geot.1965.15.1.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209049
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1680/geot.1987.37.1.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068210161
151 rdf:type schema:CreativeWork
152 https://doi.org/10.5194/nhess-11-1927-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020670293
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
155 schema:name Geomorphological Systems and Risk Research, Department of Geography and Regional Research, University of Vienna, Universitätsstraße 7, 1190, Vienna, Austria
156 Institute of Applied Geology, BOKU University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Straße 82, 1190, Vienna, Austria
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.475762.5 schema:alternateName Institute for Interdisciplinary Mountain Research
159 schema:name Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Technikerstraße 21a, 6020, Innsbruck, Austria
160 Institute of Geography, University of Innsbruck, Innrain 52f, 6020, Innsbruck, Austria
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...