Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-02-28

AUTHORS

Taskin Kavzoglu, Emrehan Kutlug Sahin, Ismail Colkesen

ABSTRACT

Identification of landslides and production of landslide susceptibility maps are crucial steps that can help planners, local administrations, and decision makers in disaster planning. Accuracy of the landslide susceptibility maps is important for reducing the losses of life and property. Models used for landslide susceptibility mapping require a combination of various factors describing features of the terrain and meteorological conditions. Many algorithms have been developed and applied in the literature to increase the accuracy of landslide susceptibility maps. In recent years, geographic information system-based multi-criteria decision analyses (MCDA) and support vector regression (SVR) have been successfully applied in the production of landslide susceptibility maps. In this study, the MCDA and SVR methods were employed to assess the shallow landslide susceptibility of Trabzon province (NE Turkey) using lithology, slope, land cover, aspect, topographic wetness index, drainage density, slope length, elevation, and distance to road as input data. Performances of the methods were compared with that of widely used logistic regression model using ROC and success rate curves. Results showed that the MCDA and SVR outperformed the conventional logistic regression method in the mapping of shallow landslides. Therefore, multi-criteria decision method and support vector regression were employed to determine potential landslide zones in the study area. More... »

PAGES

425-439

References to SciGraph publications

  • 2012-08-24. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya in NATURAL HAZARDS
  • 2004-08. A tutorial on support vector regression in STATISTICS AND COMPUTING
  • 2003-05. Landslides significantly alter land cover and the distribution of biomass: an example from the Ninole ridges of Hawai'i in PLANT ECOLOGY
  • 2009-12-09. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine in ENVIRONMENTAL EARTH SCIENCES
  • 2004-02-21. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan in LANDSLIDES
  • 2011-07-27. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey in LANDSLIDES
  • 2008-07-29. Landslides susceptibility mapping based on geographical information system, GuiZhou, south-west China in ENVIRONMENTAL EARTH SCIENCES
  • 2010-03-25. GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China in ENVIRONMENTAL EARTH SCIENCES
  • 2003-11. A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain) in NATURAL HAZARDS
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • 2011-11-26. GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model in LANDSLIDES
  • 2010-08-27. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy) in NATURAL HAZARDS
  • 2012-01-03. Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy in MATHEMATICAL GEOSCIENCES
  • 2011-03-18. Improving basin scale shallow landslide modelling using reliable soil thickness maps in NATURAL HAZARDS
  • 2007-11-23. Debris flows caused by failure of fill slopes: early detection, warning, and loss prevention in LANDSLIDES
  • 2001-01. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong in ENVIRONMENTAL EARTH SCIENCES
  • 2007-09-19. Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation in LANDSLIDES
  • 1996. Multicriteria Methodology for Decision Aiding in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10346-013-0391-7

    DOI

    http://dx.doi.org/10.1007/s10346-013-0391-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025655969


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geomatic Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Geodetic and Photogrammetric Engineering, Gebze Institute of Technology, Cayirova Campus, 41400, Gebze-Kocaeli, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.448834.7", 
              "name": [
                "Department of Geodetic and Photogrammetric Engineering, Gebze Institute of Technology, Cayirova Campus, 41400, Gebze-Kocaeli, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kavzoglu", 
            "givenName": "Taskin", 
            "id": "sg:person.010500456471.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500456471.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geodetic and Photogrammetric Engineering, Gebze Institute of Technology, Cayirova Campus, 41400, Gebze-Kocaeli, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.448834.7", 
              "name": [
                "Department of Geodetic and Photogrammetric Engineering, Gebze Institute of Technology, Cayirova Campus, 41400, Gebze-Kocaeli, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sahin", 
            "givenName": "Emrehan Kutlug", 
            "id": "sg:person.012073417471.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012073417471.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geodetic and Photogrammetric Engineering, Gebze Institute of Technology, Cayirova Campus, 41400, Gebze-Kocaeli, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.448834.7", 
              "name": [
                "Department of Geodetic and Photogrammetric Engineering, Gebze Institute of Technology, Cayirova Campus, 41400, Gebze-Kocaeli, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Colkesen", 
            "givenName": "Ismail", 
            "id": "sg:person.013251461425.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013251461425.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10346-011-0283-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014324470", 
              "https://doi.org/10.1007/s10346-011-0283-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-007-0107-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002970119", 
              "https://doi.org/10.1007/s10346-007-0107-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-012-0347-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046449782", 
              "https://doi.org/10.1007/s11069-012-0347-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-010-0509-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019095004", 
              "https://doi.org/10.1007/s12665-010-0509-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:stco.0000035301.49549.88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000991887", 
              "https://doi.org/10.1023/b:stco.0000035301.49549.88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002540000163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043630251", 
              "https://doi.org/10.1007/s002540000163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-011-9379-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025954716", 
              "https://doi.org/10.1007/s11004-011-9379-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-010-9598-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014950248", 
              "https://doi.org/10.1007/s11069-010-9598-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2500-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038307810", 
              "https://doi.org/10.1007/978-1-4757-2500-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-009-0394-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001904943", 
              "https://doi.org/10.1007/s12665-009-0394-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023225419111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039994396", 
              "https://doi.org/10.1023/a:1023225419111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-007-0087-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040021278", 
              "https://doi.org/10.1007/s10346-007-0087-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00254-008-1488-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019601659", 
              "https://doi.org/10.1007/s00254-008-1488-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-003-0006-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043706411", 
              "https://doi.org/10.1007/s10346-003-0006-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-011-9770-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017321521", 
              "https://doi.org/10.1007/s11069-011-9770-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10346-011-0305-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046010647", 
              "https://doi.org/10.1007/s10346-011-0305-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:nhaz.0000007169.28860.80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020982724", 
              "https://doi.org/10.1023/b:nhaz.0000007169.28860.80"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-02-28", 
        "datePublishedReg": "2013-02-28", 
        "description": "Identification of landslides and production of landslide susceptibility maps are crucial steps that can help planners, local administrations, and decision makers in disaster planning. Accuracy of the landslide susceptibility maps is important for reducing the losses of life and property. Models used for landslide susceptibility mapping require a combination of various factors describing features of the terrain and meteorological conditions. Many algorithms have been developed and applied in the literature to increase the accuracy of landslide susceptibility maps. In recent years, geographic information system-based multi-criteria decision analyses (MCDA) and support vector regression (SVR) have been successfully applied in the production of landslide susceptibility maps. In this study, the MCDA and SVR methods were employed to assess the shallow landslide susceptibility of Trabzon province (NE Turkey) using lithology, slope, land cover, aspect, topographic wetness index, drainage density, slope length, elevation, and distance to road as input data. Performances of the methods were compared with that of widely used logistic regression model using ROC and success rate curves. Results showed that the MCDA and SVR outperformed the conventional logistic regression method in the mapping of shallow landslides. Therefore, multi-criteria decision method and support vector regression were employed to determine potential landslide zones in the study area.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10346-013-0391-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052089", 
            "issn": [
              "1612-510X", 
              "1612-5118"
            ], 
            "name": "Landslides", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "shallow landslide susceptibility", 
          "landslide susceptibility map", 
          "potential landslide zones", 
          "identification of landslides", 
          "multi-criteria decision analysis", 
          "landslide susceptibility mapping", 
          "susceptibility maps", 
          "shallow landslides", 
          "loss of life", 
          "susceptibility mapping", 
          "vector regression", 
          "rate curves", 
          "multi-criteria decision method", 
          "meteorological conditions", 
          "landslide zone", 
          "drainage density", 
          "topographic wetness index", 
          "SVR method", 
          "landslides", 
          "wetness index", 
          "input data", 
          "slope length", 
          "success rate curve", 
          "land cover", 
          "landslide susceptibility", 
          "accuracy", 
          "method", 
          "conventional logistic regression method", 
          "properties", 
          "vector machine", 
          "terrain", 
          "performance", 
          "road", 
          "model", 
          "density", 
          "machine", 
          "GIS", 
          "zone", 
          "decision method", 
          "recent years", 
          "maps", 
          "study area", 
          "conditions", 
          "slope", 
          "production", 
          "crucial step", 
          "regression method", 
          "mapping", 
          "curves", 
          "analysis", 
          "step", 
          "cover", 
          "algorithm", 
          "results", 
          "length", 
          "combination", 
          "distance", 
          "area", 
          "lithology", 
          "decision analysis", 
          "loss", 
          "features", 
          "planning", 
          "Trabzon province", 
          "planners", 
          "decision makers", 
          "SVR", 
          "data", 
          "aspects", 
          "study", 
          "factors", 
          "life", 
          "index", 
          "literature", 
          "elevation", 
          "identification", 
          "disaster planning", 
          "susceptibility", 
          "regression models", 
          "ROC", 
          "Province", 
          "makers", 
          "years", 
          "regression", 
          "local administration", 
          "logistic regression method", 
          "administration", 
          "logistic regression models", 
          "logistic regression", 
          "geographic information system-based multi-criteria decision analyses", 
          "information system-based multi-criteria decision analyses", 
          "system-based multi-criteria decision analyses"
        ], 
        "name": "Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression", 
        "pagination": "425-439", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025655969"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10346-013-0391-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10346-013-0391-7", 
          "https://app.dimensions.ai/details/publication/pub.1025655969"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_598.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10346-013-0391-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10346-013-0391-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10346-013-0391-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10346-013-0391-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10346-013-0391-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    236 TRIPLES      22 PREDICATES      135 URIs      109 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10346-013-0391-7 schema:about anzsrc-for:09
    2 anzsrc-for:0909
    3 schema:author N5fab1d47198a4eb6a283d695285bf97b
    4 schema:citation sg:pub.10.1007/978-1-4757-2500-1
    5 sg:pub.10.1007/bf00994018
    6 sg:pub.10.1007/s00254-008-1488-5
    7 sg:pub.10.1007/s002540000163
    8 sg:pub.10.1007/s10346-003-0006-9
    9 sg:pub.10.1007/s10346-007-0087-y
    10 sg:pub.10.1007/s10346-007-0107-y
    11 sg:pub.10.1007/s10346-011-0283-7
    12 sg:pub.10.1007/s10346-011-0305-5
    13 sg:pub.10.1007/s11004-011-9379-9
    14 sg:pub.10.1007/s11069-010-9598-2
    15 sg:pub.10.1007/s11069-011-9770-3
    16 sg:pub.10.1007/s11069-012-0347-6
    17 sg:pub.10.1007/s12665-009-0394-9
    18 sg:pub.10.1007/s12665-010-0509-3
    19 sg:pub.10.1023/a:1023225419111
    20 sg:pub.10.1023/b:nhaz.0000007169.28860.80
    21 sg:pub.10.1023/b:stco.0000035301.49549.88
    22 schema:datePublished 2013-02-28
    23 schema:datePublishedReg 2013-02-28
    24 schema:description Identification of landslides and production of landslide susceptibility maps are crucial steps that can help planners, local administrations, and decision makers in disaster planning. Accuracy of the landslide susceptibility maps is important for reducing the losses of life and property. Models used for landslide susceptibility mapping require a combination of various factors describing features of the terrain and meteorological conditions. Many algorithms have been developed and applied in the literature to increase the accuracy of landslide susceptibility maps. In recent years, geographic information system-based multi-criteria decision analyses (MCDA) and support vector regression (SVR) have been successfully applied in the production of landslide susceptibility maps. In this study, the MCDA and SVR methods were employed to assess the shallow landslide susceptibility of Trabzon province (NE Turkey) using lithology, slope, land cover, aspect, topographic wetness index, drainage density, slope length, elevation, and distance to road as input data. Performances of the methods were compared with that of widely used logistic regression model using ROC and success rate curves. Results showed that the MCDA and SVR outperformed the conventional logistic regression method in the mapping of shallow landslides. Therefore, multi-criteria decision method and support vector regression were employed to determine potential landslide zones in the study area.
    25 schema:genre article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf Nc755c585f53d49baa89c98e296a06236
    29 Nc9896b53b43246f4818427d81d86b5d8
    30 sg:journal.1052089
    31 schema:keywords GIS
    32 Province
    33 ROC
    34 SVR
    35 SVR method
    36 Trabzon province
    37 accuracy
    38 administration
    39 algorithm
    40 analysis
    41 area
    42 aspects
    43 combination
    44 conditions
    45 conventional logistic regression method
    46 cover
    47 crucial step
    48 curves
    49 data
    50 decision analysis
    51 decision makers
    52 decision method
    53 density
    54 disaster planning
    55 distance
    56 drainage density
    57 elevation
    58 factors
    59 features
    60 geographic information system-based multi-criteria decision analyses
    61 identification
    62 identification of landslides
    63 index
    64 information system-based multi-criteria decision analyses
    65 input data
    66 land cover
    67 landslide susceptibility
    68 landslide susceptibility map
    69 landslide susceptibility mapping
    70 landslide zone
    71 landslides
    72 length
    73 life
    74 literature
    75 lithology
    76 local administration
    77 logistic regression
    78 logistic regression method
    79 logistic regression models
    80 loss
    81 loss of life
    82 machine
    83 makers
    84 mapping
    85 maps
    86 meteorological conditions
    87 method
    88 model
    89 multi-criteria decision analysis
    90 multi-criteria decision method
    91 performance
    92 planners
    93 planning
    94 potential landslide zones
    95 production
    96 properties
    97 rate curves
    98 recent years
    99 regression
    100 regression method
    101 regression models
    102 results
    103 road
    104 shallow landslide susceptibility
    105 shallow landslides
    106 slope
    107 slope length
    108 step
    109 study
    110 study area
    111 success rate curve
    112 susceptibility
    113 susceptibility mapping
    114 susceptibility maps
    115 system-based multi-criteria decision analyses
    116 terrain
    117 topographic wetness index
    118 vector machine
    119 vector regression
    120 wetness index
    121 years
    122 zone
    123 schema:name Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression
    124 schema:pagination 425-439
    125 schema:productId N21bc0be0ccfd46d6a7a541c17c1daf89
    126 Na101264811504b0ea9ab612af4babbbc
    127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025655969
    128 https://doi.org/10.1007/s10346-013-0391-7
    129 schema:sdDatePublished 2021-12-01T19:28
    130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    131 schema:sdPublisher Nb17d852fa2b54afd84f24bea9f5af906
    132 schema:url https://doi.org/10.1007/s10346-013-0391-7
    133 sgo:license sg:explorer/license/
    134 sgo:sdDataset articles
    135 rdf:type schema:ScholarlyArticle
    136 N21bc0be0ccfd46d6a7a541c17c1daf89 schema:name dimensions_id
    137 schema:value pub.1025655969
    138 rdf:type schema:PropertyValue
    139 N5fab1d47198a4eb6a283d695285bf97b rdf:first sg:person.010500456471.94
    140 rdf:rest Nb4463cb2215b49adb7b2b5aee2cf7b27
    141 N9b6b41d9c1054dc4b7d4f68299118a0e rdf:first sg:person.013251461425.95
    142 rdf:rest rdf:nil
    143 Na101264811504b0ea9ab612af4babbbc schema:name doi
    144 schema:value 10.1007/s10346-013-0391-7
    145 rdf:type schema:PropertyValue
    146 Nb17d852fa2b54afd84f24bea9f5af906 schema:name Springer Nature - SN SciGraph project
    147 rdf:type schema:Organization
    148 Nb4463cb2215b49adb7b2b5aee2cf7b27 rdf:first sg:person.012073417471.15
    149 rdf:rest N9b6b41d9c1054dc4b7d4f68299118a0e
    150 Nc755c585f53d49baa89c98e296a06236 schema:issueNumber 3
    151 rdf:type schema:PublicationIssue
    152 Nc9896b53b43246f4818427d81d86b5d8 schema:volumeNumber 11
    153 rdf:type schema:PublicationVolume
    154 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Engineering
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Geomatic Engineering
    159 rdf:type schema:DefinedTerm
    160 sg:journal.1052089 schema:issn 1612-510X
    161 1612-5118
    162 schema:name Landslides
    163 schema:publisher Springer Nature
    164 rdf:type schema:Periodical
    165 sg:person.010500456471.94 schema:affiliation grid-institutes:grid.448834.7
    166 schema:familyName Kavzoglu
    167 schema:givenName Taskin
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500456471.94
    169 rdf:type schema:Person
    170 sg:person.012073417471.15 schema:affiliation grid-institutes:grid.448834.7
    171 schema:familyName Sahin
    172 schema:givenName Emrehan Kutlug
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012073417471.15
    174 rdf:type schema:Person
    175 sg:person.013251461425.95 schema:affiliation grid-institutes:grid.448834.7
    176 schema:familyName Colkesen
    177 schema:givenName Ismail
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013251461425.95
    179 rdf:type schema:Person
    180 sg:pub.10.1007/978-1-4757-2500-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038307810
    181 https://doi.org/10.1007/978-1-4757-2500-1
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    184 https://doi.org/10.1007/bf00994018
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s00254-008-1488-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019601659
    187 https://doi.org/10.1007/s00254-008-1488-5
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s002540000163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043630251
    190 https://doi.org/10.1007/s002540000163
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s10346-003-0006-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043706411
    193 https://doi.org/10.1007/s10346-003-0006-9
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10346-007-0087-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040021278
    196 https://doi.org/10.1007/s10346-007-0087-y
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s10346-007-0107-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1002970119
    199 https://doi.org/10.1007/s10346-007-0107-y
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s10346-011-0283-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014324470
    202 https://doi.org/10.1007/s10346-011-0283-7
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s10346-011-0305-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046010647
    205 https://doi.org/10.1007/s10346-011-0305-5
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s11004-011-9379-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025954716
    208 https://doi.org/10.1007/s11004-011-9379-9
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s11069-010-9598-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014950248
    211 https://doi.org/10.1007/s11069-010-9598-2
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s11069-011-9770-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017321521
    214 https://doi.org/10.1007/s11069-011-9770-3
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s11069-012-0347-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046449782
    217 https://doi.org/10.1007/s11069-012-0347-6
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s12665-009-0394-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001904943
    220 https://doi.org/10.1007/s12665-009-0394-9
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s12665-010-0509-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019095004
    223 https://doi.org/10.1007/s12665-010-0509-3
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1023/a:1023225419111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039994396
    226 https://doi.org/10.1023/a:1023225419111
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1023/b:nhaz.0000007169.28860.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020982724
    229 https://doi.org/10.1023/b:nhaz.0000007169.28860.80
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1023/b:stco.0000035301.49549.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000991887
    232 https://doi.org/10.1023/b:stco.0000035301.49549.88
    233 rdf:type schema:CreativeWork
    234 grid-institutes:grid.448834.7 schema:alternateName Department of Geodetic and Photogrammetric Engineering, Gebze Institute of Technology, Cayirova Campus, 41400, Gebze-Kocaeli, Turkey
    235 schema:name Department of Geodetic and Photogrammetric Engineering, Gebze Institute of Technology, Cayirova Campus, 41400, Gebze-Kocaeli, Turkey
    236 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...