Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06

AUTHORS

H. P. Sato, E. L. Harp

ABSTRACT

The 12 May 2008 M7.9 Wenchuan earthquake in the People’s Republic of China represented a unique opportunity for the international community to use commonly available GIS (Geographic Information System) tools, like Google Earth (GE), to rapidly evaluate and assess landslide hazards triggered by the destructive earthquake and its aftershocks. In order to map earthquake-triggered landslides, we provide details on the applicability and limitations of publicly available 3-day-post- and pre-earthquake imagery provided by GE from the FORMOSAT-2 (formerly ROCSAT-2; Republic of China Satellite 2). We interpreted landslides on the 8-m-resolution FORMOSAT-2 image by GE; as a result, 257 large landslides were mapped with the highest concentration along the Beichuan fault. An estimated density of 0.3 landslides/km2 represents a minimum bound on density given the resolution of available imagery; higher resolution data would have identified more landslides. This is a preliminary study, and further study is needed to understand the landslide characteristics in detail. Although it is best to obtain landslide locations and measurements from satellite imagery having high resolution, it was found that GE is an effective and rapid reconnaissance tool. More... »

PAGES

153-159

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10346-009-0147-6

DOI

http://dx.doi.org/10.1007/s10346-009-0147-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050380280


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Geospatial Information Authority of Japan", 
          "id": "https://www.grid.ac/institutes/grid.471518.e", 
          "name": [
            "Geography and Crustal Dynamics Research Center, Geographical Survey Institute, 305-0811, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "H. P.", 
        "id": "sg:person.010136162731.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010136162731.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "United States Geological Survey, MS 966, Denver Federal Center, Box 25046, Denver, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harp", 
        "givenName": "E. L.", 
        "id": "sg:person.012723672775.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012723672775.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0013-7952(00)00038-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010317256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-6724.2008.tb00649.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011286750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-6724.2008.tb00649.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011286750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2004.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018684104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006tc001987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024017979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2006.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034605970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00813968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038606538", 
          "https://doi.org/10.1007/bf00813968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-006-0069-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046983147", 
          "https://doi.org/10.1007/s10346-006-0069-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10346-006-0069-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046983147", 
          "https://doi.org/10.1007/s10346-006-0069-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4157/ejgeo.2.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048728345"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "The 12 May 2008 M7.9 Wenchuan earthquake in the People\u2019s Republic of China represented a unique opportunity for the international community to use commonly available GIS (Geographic Information System) tools, like Google Earth (GE), to rapidly evaluate and assess landslide hazards triggered by the destructive earthquake and its aftershocks. In order to map earthquake-triggered landslides, we provide details on the applicability and limitations of publicly available 3-day-post- and pre-earthquake imagery provided by GE from the FORMOSAT-2 (formerly ROCSAT-2; Republic of China Satellite 2). We interpreted landslides on the 8-m-resolution FORMOSAT-2 image by GE; as a result, 257 large landslides were mapped with the highest concentration along the Beichuan fault. An estimated density of 0.3 landslides/km2 represents a minimum bound on density given the resolution of available imagery; higher resolution data would have identified more landslides. This is a preliminary study, and further study is needed to understand the landslide characteristics in detail. Although it is best to obtain landslide locations and measurements from satellite imagery having high resolution, it was found that GE is an effective and rapid reconnaissance tool.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10346-009-0147-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052089", 
        "issn": [
          "1612-510X", 
          "1612-5118"
        ], 
        "name": "Landslides", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth", 
    "pagination": "153-159", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "effee96ef7b83a2b100a780dfea663fb135b159e57490f252746ce5f3eaae127"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10346-009-0147-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050380280"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10346-009-0147-6", 
      "https://app.dimensions.ai/details/publication/pub.1050380280"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10346-009-0147-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10346-009-0147-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10346-009-0147-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10346-009-0147-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10346-009-0147-6'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10346-009-0147-6 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N9c4ed7b530914e9e8ca76299a0191fdc
4 schema:citation sg:pub.10.1007/bf00813968
5 sg:pub.10.1007/s10346-006-0069-5
6 https://doi.org/10.1016/j.enggeo.2006.09.013
7 https://doi.org/10.1016/j.geomorph.2004.08.011
8 https://doi.org/10.1016/s0013-7952(00)00038-7
9 https://doi.org/10.1029/2006tc001987
10 https://doi.org/10.1111/j.1755-6724.2008.tb00649.x
11 https://doi.org/10.4157/ejgeo.2.86
12 schema:datePublished 2009-06
13 schema:datePublishedReg 2009-06-01
14 schema:description The 12 May 2008 M7.9 Wenchuan earthquake in the People’s Republic of China represented a unique opportunity for the international community to use commonly available GIS (Geographic Information System) tools, like Google Earth (GE), to rapidly evaluate and assess landslide hazards triggered by the destructive earthquake and its aftershocks. In order to map earthquake-triggered landslides, we provide details on the applicability and limitations of publicly available 3-day-post- and pre-earthquake imagery provided by GE from the FORMOSAT-2 (formerly ROCSAT-2; Republic of China Satellite 2). We interpreted landslides on the 8-m-resolution FORMOSAT-2 image by GE; as a result, 257 large landslides were mapped with the highest concentration along the Beichuan fault. An estimated density of 0.3 landslides/km2 represents a minimum bound on density given the resolution of available imagery; higher resolution data would have identified more landslides. This is a preliminary study, and further study is needed to understand the landslide characteristics in detail. Although it is best to obtain landslide locations and measurements from satellite imagery having high resolution, it was found that GE is an effective and rapid reconnaissance tool.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N0181d25a9e174ac18999b9728da9936c
19 Na61ab12921fc46d7a8249b7e0a80e60d
20 sg:journal.1052089
21 schema:name Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth
22 schema:pagination 153-159
23 schema:productId N0ec4151f0cae4260b14886ca36f8c3d5
24 Nc50bdf5242b54a5d9bd07da4070c780a
25 Nf366e5f4ade14fd1a21015322606515a
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050380280
27 https://doi.org/10.1007/s10346-009-0147-6
28 schema:sdDatePublished 2019-04-10T15:53
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N2e393f9d10844dd5838c90f87c3a8912
31 schema:url http://link.springer.com/10.1007%2Fs10346-009-0147-6
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0181d25a9e174ac18999b9728da9936c schema:issueNumber 2
36 rdf:type schema:PublicationIssue
37 N0ec4151f0cae4260b14886ca36f8c3d5 schema:name readcube_id
38 schema:value effee96ef7b83a2b100a780dfea663fb135b159e57490f252746ce5f3eaae127
39 rdf:type schema:PropertyValue
40 N2e393f9d10844dd5838c90f87c3a8912 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N7e4c5075b5a24e5dbe8763da9258bf96 rdf:first sg:person.012723672775.05
43 rdf:rest rdf:nil
44 N9c4ed7b530914e9e8ca76299a0191fdc rdf:first sg:person.010136162731.53
45 rdf:rest N7e4c5075b5a24e5dbe8763da9258bf96
46 Na61ab12921fc46d7a8249b7e0a80e60d schema:volumeNumber 6
47 rdf:type schema:PublicationVolume
48 Nc50bdf5242b54a5d9bd07da4070c780a schema:name doi
49 schema:value 10.1007/s10346-009-0147-6
50 rdf:type schema:PropertyValue
51 Nf366e5f4ade14fd1a21015322606515a schema:name dimensions_id
52 schema:value pub.1050380280
53 rdf:type schema:PropertyValue
54 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
55 schema:name Engineering
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
58 schema:name Geomatic Engineering
59 rdf:type schema:DefinedTerm
60 sg:journal.1052089 schema:issn 1612-510X
61 1612-5118
62 schema:name Landslides
63 rdf:type schema:Periodical
64 sg:person.010136162731.53 schema:affiliation https://www.grid.ac/institutes/grid.471518.e
65 schema:familyName Sato
66 schema:givenName H. P.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010136162731.53
68 rdf:type schema:Person
69 sg:person.012723672775.05 schema:affiliation https://www.grid.ac/institutes/grid.2865.9
70 schema:familyName Harp
71 schema:givenName E. L.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012723672775.05
73 rdf:type schema:Person
74 sg:pub.10.1007/bf00813968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038606538
75 https://doi.org/10.1007/bf00813968
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/s10346-006-0069-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046983147
78 https://doi.org/10.1007/s10346-006-0069-5
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/j.enggeo.2006.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034605970
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.geomorph.2004.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018684104
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s0013-7952(00)00038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010317256
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1029/2006tc001987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024017979
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1111/j.1755-6724.2008.tb00649.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011286750
89 rdf:type schema:CreativeWork
90 https://doi.org/10.4157/ejgeo.2.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048728345
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.2865.9 schema:alternateName United States Geological Survey
93 schema:name United States Geological Survey, MS 966, Denver Federal Center, Box 25046, Denver, CO, USA
94 rdf:type schema:Organization
95 https://www.grid.ac/institutes/grid.471518.e schema:alternateName Geospatial Information Authority of Japan
96 schema:name Geography and Crustal Dynamics Research Center, Geographical Survey Institute, 305-0811, Tsukuba, Japan
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...