Using drill resistance to quantify the density in coarse woody debris of Norway spruce View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-09

AUTHORS

Tiemo Kahl, Christian Wirth, Martina Mund, Gerhard Böhnisch, Ernst-Detlef Schulze

ABSTRACT

To evaluate the mass of coarse woody debris (CWD), it is necessary to quantify its density. Drill resistance measurements are introduced as a approach to estimate the density of CWD in different stages of decay. Dead logs of Norway spruce [Picea abies (L.) Karst.] from a Central European mountainous site were used as a test system to compare the new method with conventional predictors of wood density such as fast quantitative field estimates (e.g., knife probe) and classification of decay classes based on a set of qualitative traits and quantitative estimates. The model containing only drill resistance as a predictor explained 65% of the variation in wood density and was markedly better than models containing one or more of several conventional predictors. However, we show that the relationship between drill resistance and gravimetric wood density relationship is sensitive to the decay status. Therefore, the best model combines drill resistance and decay class (adj. R² = 0.732). An additional experiment showed that drill resistance is also sensitive to the moisture state (fresh vs. oven-dry) of the sample. The major potential of the method lies in its non-destructive nature which allows repeated sampling in long-term ecosystem studies or in protected areas where destructive sampling is prohibited. The limitations of the method are discussed and recommendations for applications are given. More... »

PAGES

467-473

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10342-009-0294-2

DOI

http://dx.doi.org/10.1007/s10342-009-0294-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043954430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Institute of Silviculture, University of Freiburg, 79085, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kahl", 
        "givenName": "Tiemo", 
        "id": "sg:person.01324772132.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324772132.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biogeochemistry", 
          "id": "https://www.grid.ac/institutes/grid.419500.9", 
          "name": [
            "Max Planck Institute for Biogeochemistry, Hans-Kn\u00f6ll-Stra\u00dfe 10, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wirth", 
        "givenName": "Christian", 
        "id": "sg:person.0741022751.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741022751.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biogeochemistry", 
          "id": "https://www.grid.ac/institutes/grid.419500.9", 
          "name": [
            "Max Planck Institute for Biogeochemistry, Hans-Kn\u00f6ll-Stra\u00dfe 10, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mund", 
        "givenName": "Martina", 
        "id": "sg:person.01017734617.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017734617.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biogeochemistry", 
          "id": "https://www.grid.ac/institutes/grid.419500.9", 
          "name": [
            "Max Planck Institute for Biogeochemistry, Hans-Kn\u00f6ll-Stra\u00dfe 10, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f6hnisch", 
        "givenName": "Gerhard", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biogeochemistry", 
          "id": "https://www.grid.ac/institutes/grid.419500.9", 
          "name": [
            "Max Planck Institute for Biogeochemistry, Hans-Kn\u00f6ll-Stra\u00dfe 10, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulze", 
        "givenName": "Ernst-Detlef", 
        "id": "sg:person.0654066337.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654066337.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1139/x82-080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005447410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3236775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006189324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3236775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006189324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3236775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006189324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100860300018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011621210", 
          "https://doi.org/10.1007/s100860300018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100860300018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011621210", 
          "https://doi.org/10.1007/s100860300018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3207(01)00049-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012282014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x03-033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016243612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2005.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018214044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10342-007-0182-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019522022", 
          "https://doi.org/10.1007/s10342-007-0182-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10342-007-0182-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019522022", 
          "https://doi.org/10.1007/s10342-007-0182-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02621413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021335369", 
          "https://doi.org/10.1007/bf02621413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02621413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021335369", 
          "https://doi.org/10.1007/bf02621413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02827589950154159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022035217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ecolsys.33.010802.150507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026557093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02827580260138071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026993928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x03-212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029046488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/hfsg.1996.50.4.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029529647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1035961913", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2917-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035961913", 
          "https://doi.org/10.1007/978-1-4757-2917-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2917-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035961913", 
          "https://doi.org/10.1007/978-1-4757-2917-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x99-005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038332508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2504(08)60121-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040634219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022825809503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040788794", 
          "https://doi.org/10.1023/a:1022825809503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3188/szf.2002.0201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041605786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x03-176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052874482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14214/sf.390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067211897"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-09", 
    "datePublishedReg": "2009-09-01", 
    "description": "To evaluate the mass of coarse woody debris (CWD), it is necessary to quantify its density. Drill resistance measurements are introduced as a approach to estimate the density of CWD in different stages of decay. Dead logs of Norway spruce [Picea abies (L.) Karst.] from a Central European mountainous site were used as a test system to compare the new method with conventional predictors of wood density such as fast quantitative field estimates (e.g., knife probe) and classification of decay classes based on a set of qualitative traits and quantitative estimates. The model containing only drill resistance as a predictor explained 65% of the variation in wood density and was markedly better than models containing one or more of several conventional predictors. However, we show that the relationship between drill resistance and gravimetric wood density relationship is sensitive to the decay status. Therefore, the best model combines drill resistance and decay class (adj. R\u00b2 = 0.732). An additional experiment showed that drill resistance is also sensitive to the moisture state (fresh vs. oven-dry) of the sample. The major potential of the method lies in its non-destructive nature which allows repeated sampling in long-term ecosystem studies or in protected areas where destructive sampling is prohibited. The limitations of the method are discussed and recommendations for applications are given.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10342-009-0294-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040667", 
        "issn": [
          "1612-4669", 
          "1612-4677"
        ], 
        "name": "European Journal of Forest Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "128"
      }
    ], 
    "name": "Using drill resistance to quantify the density in coarse woody debris of Norway spruce", 
    "pagination": "467-473", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d15ec3d7c32cd80962ee0199703379df1af31f5fd199b82a651113d2d894ea3d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10342-009-0294-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043954430"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10342-009-0294-2", 
      "https://app.dimensions.ai/details/publication/pub.1043954430"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13096_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10342-009-0294-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10342-009-0294-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10342-009-0294-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10342-009-0294-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10342-009-0294-2'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10342-009-0294-2 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author N01d70df29ccd41419a66d06f3be27a26
4 schema:citation sg:pub.10.1007/978-1-4757-2917-7
5 sg:pub.10.1007/bf02621413
6 sg:pub.10.1007/s100860300018
7 sg:pub.10.1007/s10342-007-0182-6
8 sg:pub.10.1023/a:1022825809503
9 https://app.dimensions.ai/details/publication/pub.1035961913
10 https://doi.org/10.1016/j.foreco.2005.02.032
11 https://doi.org/10.1016/s0006-3207(01)00049-0
12 https://doi.org/10.1016/s0065-2504(08)60121-x
13 https://doi.org/10.1080/02827580260138071
14 https://doi.org/10.1080/02827589950154159
15 https://doi.org/10.1139/x03-033
16 https://doi.org/10.1139/x03-176
17 https://doi.org/10.1139/x03-212
18 https://doi.org/10.1139/x82-080
19 https://doi.org/10.1139/x99-005
20 https://doi.org/10.1146/annurev.ecolsys.33.010802.150507
21 https://doi.org/10.14214/sf.390
22 https://doi.org/10.1515/hfsg.1996.50.4.303
23 https://doi.org/10.2307/3236775
24 https://doi.org/10.3188/szf.2002.0201
25 schema:datePublished 2009-09
26 schema:datePublishedReg 2009-09-01
27 schema:description To evaluate the mass of coarse woody debris (CWD), it is necessary to quantify its density. Drill resistance measurements are introduced as a approach to estimate the density of CWD in different stages of decay. Dead logs of Norway spruce [Picea abies (L.) Karst.] from a Central European mountainous site were used as a test system to compare the new method with conventional predictors of wood density such as fast quantitative field estimates (e.g., knife probe) and classification of decay classes based on a set of qualitative traits and quantitative estimates. The model containing only drill resistance as a predictor explained 65% of the variation in wood density and was markedly better than models containing one or more of several conventional predictors. However, we show that the relationship between drill resistance and gravimetric wood density relationship is sensitive to the decay status. Therefore, the best model combines drill resistance and decay class (adj. R² = 0.732). An additional experiment showed that drill resistance is also sensitive to the moisture state (fresh vs. oven-dry) of the sample. The major potential of the method lies in its non-destructive nature which allows repeated sampling in long-term ecosystem studies or in protected areas where destructive sampling is prohibited. The limitations of the method are discussed and recommendations for applications are given.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Ncc9724509daa4f088f4705443fd67ff4
32 Ncfadc3a838784f79bfbb0c8172e90c3a
33 sg:journal.1040667
34 schema:name Using drill resistance to quantify the density in coarse woody debris of Norway spruce
35 schema:pagination 467-473
36 schema:productId N2a04b8c49f544ff9a8131af3c42b785e
37 N866a9c13b6ce490d81f26255bb3e91d1
38 N9cf54901e0e946e09401698c21304c45
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043954430
40 https://doi.org/10.1007/s10342-009-0294-2
41 schema:sdDatePublished 2019-04-11T14:31
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nf16ba0e6c65b48cfa5d83a771fc42d14
44 schema:url http://link.springer.com/10.1007%2Fs10342-009-0294-2
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N01d70df29ccd41419a66d06f3be27a26 rdf:first sg:person.01324772132.94
49 rdf:rest Nd6499c01acaf4a1ebe700bcb5f45c4ff
50 N1f39c06ef9fa4281aa4df871c48ae27a rdf:first sg:person.0654066337.20
51 rdf:rest rdf:nil
52 N2a04b8c49f544ff9a8131af3c42b785e schema:name doi
53 schema:value 10.1007/s10342-009-0294-2
54 rdf:type schema:PropertyValue
55 N8035e3306aa241bc959aba2ac56a3543 rdf:first sg:person.01017734617.98
56 rdf:rest Nb2c0f3c4eb09407887e36551202ec23b
57 N866a9c13b6ce490d81f26255bb3e91d1 schema:name dimensions_id
58 schema:value pub.1043954430
59 rdf:type schema:PropertyValue
60 N91d56aea781f4987b9248bbf37f04713 schema:affiliation https://www.grid.ac/institutes/grid.419500.9
61 schema:familyName Böhnisch
62 schema:givenName Gerhard
63 rdf:type schema:Person
64 N9cf54901e0e946e09401698c21304c45 schema:name readcube_id
65 schema:value d15ec3d7c32cd80962ee0199703379df1af31f5fd199b82a651113d2d894ea3d
66 rdf:type schema:PropertyValue
67 Nb2c0f3c4eb09407887e36551202ec23b rdf:first N91d56aea781f4987b9248bbf37f04713
68 rdf:rest N1f39c06ef9fa4281aa4df871c48ae27a
69 Ncc9724509daa4f088f4705443fd67ff4 schema:volumeNumber 128
70 rdf:type schema:PublicationVolume
71 Ncfadc3a838784f79bfbb0c8172e90c3a schema:issueNumber 5
72 rdf:type schema:PublicationIssue
73 Nd6499c01acaf4a1ebe700bcb5f45c4ff rdf:first sg:person.0741022751.85
74 rdf:rest N8035e3306aa241bc959aba2ac56a3543
75 Nf16ba0e6c65b48cfa5d83a771fc42d14 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
78 schema:name Environmental Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
81 schema:name Environmental Science and Management
82 rdf:type schema:DefinedTerm
83 sg:journal.1040667 schema:issn 1612-4669
84 1612-4677
85 schema:name European Journal of Forest Research
86 rdf:type schema:Periodical
87 sg:person.01017734617.98 schema:affiliation https://www.grid.ac/institutes/grid.419500.9
88 schema:familyName Mund
89 schema:givenName Martina
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017734617.98
91 rdf:type schema:Person
92 sg:person.01324772132.94 schema:affiliation https://www.grid.ac/institutes/grid.5963.9
93 schema:familyName Kahl
94 schema:givenName Tiemo
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324772132.94
96 rdf:type schema:Person
97 sg:person.0654066337.20 schema:affiliation https://www.grid.ac/institutes/grid.419500.9
98 schema:familyName Schulze
99 schema:givenName Ernst-Detlef
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654066337.20
101 rdf:type schema:Person
102 sg:person.0741022751.85 schema:affiliation https://www.grid.ac/institutes/grid.419500.9
103 schema:familyName Wirth
104 schema:givenName Christian
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741022751.85
106 rdf:type schema:Person
107 sg:pub.10.1007/978-1-4757-2917-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035961913
108 https://doi.org/10.1007/978-1-4757-2917-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02621413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021335369
111 https://doi.org/10.1007/bf02621413
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s100860300018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011621210
114 https://doi.org/10.1007/s100860300018
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10342-007-0182-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019522022
117 https://doi.org/10.1007/s10342-007-0182-6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/a:1022825809503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040788794
120 https://doi.org/10.1023/a:1022825809503
121 rdf:type schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1035961913 schema:CreativeWork
123 https://doi.org/10.1016/j.foreco.2005.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018214044
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0006-3207(01)00049-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012282014
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0065-2504(08)60121-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040634219
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/02827580260138071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026993928
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/02827589950154159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022035217
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1139/x03-033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016243612
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1139/x03-176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052874482
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1139/x03-212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029046488
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1139/x82-080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005447410
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1139/x99-005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038332508
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1146/annurev.ecolsys.33.010802.150507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026557093
144 rdf:type schema:CreativeWork
145 https://doi.org/10.14214/sf.390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067211897
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1515/hfsg.1996.50.4.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029529647
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2307/3236775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006189324
150 rdf:type schema:CreativeWork
151 https://doi.org/10.3188/szf.2002.0201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041605786
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.419500.9 schema:alternateName Max Planck Institute for Biogeochemistry
154 schema:name Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745, Jena, Germany
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.5963.9 schema:alternateName University of Freiburg
157 schema:name Institute of Silviculture, University of Freiburg, 79085, Freiburg, Germany
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...