Comprehensive Approach for Monitoring Human Tissue Degradation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Lena M. Dubois, Pierre-Hugues Stefanuto, Katelynn A. Perrault, Geraldine Delporte, Philippe Delvenne, Jean-François Focant

ABSTRACT

In recent years, comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC–TOFMS) has been reported as a suitable tool for the determination of volatile organic compounds (VOCs) emitted during the process of cadaveric decomposition. The main aim of the present study was to investigate temporal changes in VOC patterns during the decomposition process of various human tissues. The focus of previous research was mainly on the analysis of VOCs produced by whole cadavers. However, this study aimed to identify whether the VOCs produced during decomposition differ between specific organs, and further, to determine the extent of the variation between cadavers. The sampling process developed for this project allowed inter- and intra-cadaveric comparison. The headspace of heart, lung, liver, kidney and blood was monitored during the decomposition process. Tissue samples from five different cadavers were sampled regularly by dynamic pumping onto sorbent tubes that were further thermally desorbed onto a GC × GC–TOFMS system. A large amount of data (n = 774) was obtained, leading to challenges in the integration, interpretation and representation of the results. Eventually, multivariate statistical methods, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA) were applied to the dataset to evaluate trends and differences in subgroups. It was demonstrated that there were subtle differences between the sets of compounds produced from each organ due to the different functions they carry out within the body. However, VOC profiles were more similar among organs from the same cadaver than when comparing samples from different cadavers. Various reasons may cause the differences between the analyzed cadavers, ranging from the individual diet and lifestyle to the time since death. More... »

PAGES

1-15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10337-019-03710-3

DOI

http://dx.doi.org/10.1007/s10337-019-03710-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113053614


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Li\u00e8ge", 
          "id": "https://www.grid.ac/institutes/grid.4861.b", 
          "name": [
            "CART, Organic and Biological Analytical Chemistry Group, University of Li\u00e8ge, All\u00e9e du six Ao\u00fbt, B6c, Quartier Agora 11, Sart-Tilman, 4000, Li\u00e8ge, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubois", 
        "givenName": "Lena M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Li\u00e8ge", 
          "id": "https://www.grid.ac/institutes/grid.4861.b", 
          "name": [
            "CART, Organic and Biological Analytical Chemistry Group, University of Li\u00e8ge, All\u00e9e du six Ao\u00fbt, B6c, Quartier Agora 11, Sart-Tilman, 4000, Li\u00e8ge, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stefanuto", 
        "givenName": "Pierre-Hugues", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chaminade University of Honolulu", 
          "id": "https://www.grid.ac/institutes/grid.253990.4", 
          "name": [
            "Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, Chaminade University of Honolulu, 3140 Waialae Ave, 96816, Honolulu, HI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perrault", 
        "givenName": "Katelynn A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Li\u00e8ge", 
          "id": "https://www.grid.ac/institutes/grid.4861.b", 
          "name": [
            "Pathological Anatomy and Cytology Laboratory, University of Li\u00e8ge, CHU B23, 4000, Li\u00e8ge, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delporte", 
        "givenName": "Geraldine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Li\u00e8ge", 
          "id": "https://www.grid.ac/institutes/grid.4861.b", 
          "name": [
            "Pathological Anatomy and Cytology Laboratory, University of Li\u00e8ge, CHU B23, 4000, Li\u00e8ge, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delvenne", 
        "givenName": "Philippe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Li\u00e8ge", 
          "id": "https://www.grid.ac/institutes/grid.4861.b", 
          "name": [
            "CART, Organic and Biological Analytical Chemistry Group, University of Li\u00e8ge, All\u00e9e du six Ao\u00fbt, B6c, Quartier Agora 11, Sart-Tilman, 4000, Li\u00e8ge, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Focant", 
        "givenName": "Jean-Fran\u00e7ois", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.heliyon.2016.e00070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000366700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2012.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000407870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-016-9748-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000700772", 
          "https://doi.org/10.1007/s00216-016-9748-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-016-9748-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000700772", 
          "https://doi.org/10.1007/s00216-016-9748-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2011.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002731111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-011-3417-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004139866", 
          "https://doi.org/10.1007/s00253-011-3417-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2012.03.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004207128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2011.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004641661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2014.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008203146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2007.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010558482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/separations3030024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012243106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0113681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012758340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/toxins8110326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012849698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2003.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014965868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2003.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014965868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0095107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019394515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1556-4029.2008.00680.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2008.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027617981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10337-015-2916-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030762175", 
          "https://doi.org/10.1007/s10337-015-2916-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10337-015-2916-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030762175", 
          "https://doi.org/10.1007/s10337-015-2916-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-014-7741-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031655887", 
          "https://doi.org/10.1007/s00216-014-7741-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-014-7741-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031655887", 
          "https://doi.org/10.1007/s00216-014-7741-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2014.10.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032523656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00114-009-0545-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035382371", 
          "https://doi.org/10.1007/s00114-009-0545-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00114-009-0545-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035382371", 
          "https://doi.org/10.1007/s00114-009-0545-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00114-009-0545-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035382371", 
          "https://doi.org/10.1007/s00114-009-0545-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cplu.201402003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037014255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0039005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038245239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.201400935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040570027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/chromatography1030120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041096096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2016.05.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043577977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2015.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044906044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1556-4029.12638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044908222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00085030.2016.1184840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045072061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-011-5167-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045334998", 
          "https://doi.org/10.1007/s00216-011-5167-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12024-015-9693-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045584067", 
          "https://doi.org/10.1007/s12024-015-9693-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ay00371g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050560623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-015-8683-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051703085", 
          "https://doi.org/10.1007/s00216-015-8683-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2009.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052361827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac302614y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055003507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/jfs2003434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067618955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15328/chemb_2013_4177-186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067735278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biosci/bix046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084601959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2017.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084820344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2017.05.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085753065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00414-017-1621-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086032473", 
          "https://doi.org/10.1007/s00414-017-1621-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00414-017-1621-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086032473", 
          "https://doi.org/10.1007/s00414-017-1621-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forc.2017.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086112028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forc.2018.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100248166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00450618.2018.1439100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101270333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2018.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104327555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1556-4029.13901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106524499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1556-4029.13901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106524499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1556-4029.13901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106524499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.legalmed.2018.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107186752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.legalmed.2018.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107186752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781439821923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109384664"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-28", 
    "datePublishedReg": "2019-03-28", 
    "description": "In recent years, comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC \u00d7 GC\u2013TOFMS) has been reported as a suitable tool for the determination of volatile organic compounds (VOCs) emitted during the process of cadaveric decomposition. The main aim of the present study was to investigate temporal changes in VOC patterns during the decomposition process of various human tissues. The focus of previous research was mainly on the analysis of VOCs produced by whole cadavers. However, this study aimed to identify whether the VOCs produced during decomposition differ between specific organs, and further, to determine the extent of the variation between cadavers. The sampling process developed for this project allowed inter- and intra-cadaveric comparison. The headspace of heart, lung, liver, kidney and blood was monitored during the decomposition process. Tissue samples from five different cadavers were sampled regularly by dynamic pumping onto sorbent tubes that were further thermally desorbed onto a GC \u00d7 GC\u2013TOFMS system. A large amount of data (n = 774) was obtained, leading to challenges in the integration, interpretation and representation of the results. Eventually, multivariate statistical methods, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA) were applied to the dataset to evaluate trends and differences in subgroups. It was demonstrated that there were subtle differences between the sets of compounds produced from each organ due to the different functions they carry out within the body. However, VOC profiles were more similar among organs from the same cadaver than when comparing samples from different cadavers. Various reasons may cause the differences between the analyzed cadavers, ranging from the individual diet and lifestyle to the time since death.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10337-019-03710-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1015080", 
        "issn": [
          "0009-5893", 
          "1612-1112"
        ], 
        "name": "Chromatographia", 
        "type": "Periodical"
      }
    ], 
    "name": "Comprehensive Approach for Monitoring Human Tissue Degradation", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "567ab8b1723f0cfb2d0fd5d318d7e8066d953bc49bcac413672863f322cf62e0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10337-019-03710-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113053614"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10337-019-03710-3", 
      "https://app.dimensions.ai/details/publication/pub.1113053614"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78944_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10337-019-03710-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10337-019-03710-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10337-019-03710-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10337-019-03710-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10337-019-03710-3'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      71 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10337-019-03710-3 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N5ba7d9a59f2e4274bccfd33f456c7c17
4 schema:citation sg:pub.10.1007/s00114-009-0545-6
5 sg:pub.10.1007/s00216-011-5167-0
6 sg:pub.10.1007/s00216-014-7741-8
7 sg:pub.10.1007/s00216-015-8683-5
8 sg:pub.10.1007/s00216-016-9748-9
9 sg:pub.10.1007/s00253-011-3417-x
10 sg:pub.10.1007/s00414-017-1621-7
11 sg:pub.10.1007/s10337-015-2916-9
12 sg:pub.10.1007/s12024-015-9693-5
13 https://doi.org/10.1002/cplu.201402003
14 https://doi.org/10.1002/jssc.201400935
15 https://doi.org/10.1016/j.chroma.2003.09.027
16 https://doi.org/10.1016/j.chroma.2012.03.048
17 https://doi.org/10.1016/j.chroma.2014.10.057
18 https://doi.org/10.1016/j.chroma.2017.04.026
19 https://doi.org/10.1016/j.chroma.2017.05.064
20 https://doi.org/10.1016/j.forc.2017.06.002
21 https://doi.org/10.1016/j.forc.2018.01.001
22 https://doi.org/10.1016/j.forsciint.2008.12.022
23 https://doi.org/10.1016/j.forsciint.2009.03.034
24 https://doi.org/10.1016/j.forsciint.2011.01.010
25 https://doi.org/10.1016/j.forsciint.2011.02.023
26 https://doi.org/10.1016/j.forsciint.2012.02.007
27 https://doi.org/10.1016/j.forsciint.2015.09.010
28 https://doi.org/10.1016/j.forsciint.2016.05.035
29 https://doi.org/10.1016/j.heliyon.2016.e00070
30 https://doi.org/10.1016/j.legalmed.2018.09.011
31 https://doi.org/10.1016/j.mimet.2014.07.026
32 https://doi.org/10.1016/j.scitotenv.2007.07.003
33 https://doi.org/10.1016/j.trac.2018.05.017
34 https://doi.org/10.1021/ac302614y
35 https://doi.org/10.1039/c5ay00371g
36 https://doi.org/10.1080/00085030.2016.1184840
37 https://doi.org/10.1080/00450618.2018.1439100
38 https://doi.org/10.1093/biosci/bix046
39 https://doi.org/10.1111/1556-4029.12638
40 https://doi.org/10.1111/1556-4029.13901
41 https://doi.org/10.1111/j.1556-4029.2008.00680.x
42 https://doi.org/10.1201/9781439821923
43 https://doi.org/10.1371/journal.pone.0039005
44 https://doi.org/10.1371/journal.pone.0095107
45 https://doi.org/10.1371/journal.pone.0113681
46 https://doi.org/10.1520/jfs2003434
47 https://doi.org/10.15328/chemb_2013_4177-186
48 https://doi.org/10.3390/chromatography1030120
49 https://doi.org/10.3390/separations3030024
50 https://doi.org/10.3390/toxins8110326
51 schema:datePublished 2019-03-28
52 schema:datePublishedReg 2019-03-28
53 schema:description In recent years, comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC–TOFMS) has been reported as a suitable tool for the determination of volatile organic compounds (VOCs) emitted during the process of cadaveric decomposition. The main aim of the present study was to investigate temporal changes in VOC patterns during the decomposition process of various human tissues. The focus of previous research was mainly on the analysis of VOCs produced by whole cadavers. However, this study aimed to identify whether the VOCs produced during decomposition differ between specific organs, and further, to determine the extent of the variation between cadavers. The sampling process developed for this project allowed inter- and intra-cadaveric comparison. The headspace of heart, lung, liver, kidney and blood was monitored during the decomposition process. Tissue samples from five different cadavers were sampled regularly by dynamic pumping onto sorbent tubes that were further thermally desorbed onto a GC × GC–TOFMS system. A large amount of data (n = 774) was obtained, leading to challenges in the integration, interpretation and representation of the results. Eventually, multivariate statistical methods, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA) were applied to the dataset to evaluate trends and differences in subgroups. It was demonstrated that there were subtle differences between the sets of compounds produced from each organ due to the different functions they carry out within the body. However, VOC profiles were more similar among organs from the same cadaver than when comparing samples from different cadavers. Various reasons may cause the differences between the analyzed cadavers, ranging from the individual diet and lifestyle to the time since death.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf sg:journal.1015080
58 schema:name Comprehensive Approach for Monitoring Human Tissue Degradation
59 schema:pagination 1-15
60 schema:productId N183d6e5402c848e38a9e6141e4f83b73
61 N8835b0cd33e4458eb0f3aef5f9493d24
62 Na314d32efed54e37821ab5726c1f5f45
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113053614
64 https://doi.org/10.1007/s10337-019-03710-3
65 schema:sdDatePublished 2019-04-11T13:18
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N675d4e3341c149d1bdb997bf66338fab
68 schema:url https://link.springer.com/10.1007%2Fs10337-019-03710-3
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N02e37990250648248805da2803849a9a schema:affiliation https://www.grid.ac/institutes/grid.4861.b
73 schema:familyName Stefanuto
74 schema:givenName Pierre-Hugues
75 rdf:type schema:Person
76 N183d6e5402c848e38a9e6141e4f83b73 schema:name doi
77 schema:value 10.1007/s10337-019-03710-3
78 rdf:type schema:PropertyValue
79 N1863ef6d0ac04c5c9baa356452793e5f schema:affiliation https://www.grid.ac/institutes/grid.253990.4
80 schema:familyName Perrault
81 schema:givenName Katelynn A.
82 rdf:type schema:Person
83 N31a0c1c13faa43f29d978d5811aad41f rdf:first N1863ef6d0ac04c5c9baa356452793e5f
84 rdf:rest Nd0e8249713fb4686a3d25ec4a5642139
85 N5026f09ec66f4525b3f254484da14350 schema:affiliation https://www.grid.ac/institutes/grid.4861.b
86 schema:familyName Focant
87 schema:givenName Jean-François
88 rdf:type schema:Person
89 N5ba7d9a59f2e4274bccfd33f456c7c17 rdf:first Nc23fd06403764aff872c21c4dcfd6f19
90 rdf:rest Nb15cfe4c0bc4437b8f4daa274f7e4445
91 N675d4e3341c149d1bdb997bf66338fab schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N76a04cde38e64fa09b0f8af89879fa2b schema:affiliation https://www.grid.ac/institutes/grid.4861.b
94 schema:familyName Delporte
95 schema:givenName Geraldine
96 rdf:type schema:Person
97 N7ee624f563074b02b67f651428bf38d7 schema:affiliation https://www.grid.ac/institutes/grid.4861.b
98 schema:familyName Delvenne
99 schema:givenName Philippe
100 rdf:type schema:Person
101 N8835b0cd33e4458eb0f3aef5f9493d24 schema:name readcube_id
102 schema:value 567ab8b1723f0cfb2d0fd5d318d7e8066d953bc49bcac413672863f322cf62e0
103 rdf:type schema:PropertyValue
104 N929a3fb4cfdb4b2cb0b9f93bee64ce75 rdf:first N7ee624f563074b02b67f651428bf38d7
105 rdf:rest Nfa3861b4a21547d980c664d9484b33af
106 Na314d32efed54e37821ab5726c1f5f45 schema:name dimensions_id
107 schema:value pub.1113053614
108 rdf:type schema:PropertyValue
109 Nb15cfe4c0bc4437b8f4daa274f7e4445 rdf:first N02e37990250648248805da2803849a9a
110 rdf:rest N31a0c1c13faa43f29d978d5811aad41f
111 Nc23fd06403764aff872c21c4dcfd6f19 schema:affiliation https://www.grid.ac/institutes/grid.4861.b
112 schema:familyName Dubois
113 schema:givenName Lena M.
114 rdf:type schema:Person
115 Nd0e8249713fb4686a3d25ec4a5642139 rdf:first N76a04cde38e64fa09b0f8af89879fa2b
116 rdf:rest N929a3fb4cfdb4b2cb0b9f93bee64ce75
117 Nfa3861b4a21547d980c664d9484b33af rdf:first N5026f09ec66f4525b3f254484da14350
118 rdf:rest rdf:nil
119 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
120 schema:name Chemical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
123 schema:name Analytical Chemistry
124 rdf:type schema:DefinedTerm
125 sg:journal.1015080 schema:issn 0009-5893
126 1612-1112
127 schema:name Chromatographia
128 rdf:type schema:Periodical
129 sg:pub.10.1007/s00114-009-0545-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035382371
130 https://doi.org/10.1007/s00114-009-0545-6
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00216-011-5167-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045334998
133 https://doi.org/10.1007/s00216-011-5167-0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00216-014-7741-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031655887
136 https://doi.org/10.1007/s00216-014-7741-8
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00216-015-8683-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051703085
139 https://doi.org/10.1007/s00216-015-8683-5
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00216-016-9748-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000700772
142 https://doi.org/10.1007/s00216-016-9748-9
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00253-011-3417-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004139866
145 https://doi.org/10.1007/s00253-011-3417-x
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00414-017-1621-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086032473
148 https://doi.org/10.1007/s00414-017-1621-7
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s10337-015-2916-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030762175
151 https://doi.org/10.1007/s10337-015-2916-9
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s12024-015-9693-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045584067
154 https://doi.org/10.1007/s12024-015-9693-5
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/cplu.201402003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037014255
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/jssc.201400935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040570027
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.chroma.2003.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014965868
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.chroma.2012.03.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004207128
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.chroma.2014.10.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032523656
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.chroma.2017.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084820344
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.chroma.2017.05.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085753065
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.forc.2017.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086112028
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.forc.2018.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100248166
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.forsciint.2008.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027617981
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.forsciint.2009.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052361827
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.forsciint.2011.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002731111
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.forsciint.2011.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004641661
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.forsciint.2012.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000407870
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.forsciint.2015.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044906044
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.forsciint.2016.05.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043577977
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.heliyon.2016.e00070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000366700
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.legalmed.2018.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107186752
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.mimet.2014.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008203146
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.scitotenv.2007.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010558482
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.trac.2018.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104327555
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/ac302614y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055003507
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1039/c5ay00371g schema:sameAs https://app.dimensions.ai/details/publication/pub.1050560623
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/00085030.2016.1184840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045072061
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1080/00450618.2018.1439100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101270333
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/biosci/bix046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084601959
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1111/1556-4029.12638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044908222
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/1556-4029.13901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106524499
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1111/j.1556-4029.2008.00680.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247946
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1201/9781439821923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109384664
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pone.0039005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038245239
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pone.0095107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019394515
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1371/journal.pone.0113681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012758340
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1520/jfs2003434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067618955
223 rdf:type schema:CreativeWork
224 https://doi.org/10.15328/chemb_2013_4177-186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067735278
225 rdf:type schema:CreativeWork
226 https://doi.org/10.3390/chromatography1030120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041096096
227 rdf:type schema:CreativeWork
228 https://doi.org/10.3390/separations3030024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012243106
229 rdf:type schema:CreativeWork
230 https://doi.org/10.3390/toxins8110326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012849698
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.253990.4 schema:alternateName Chaminade University of Honolulu
233 schema:name Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, Chaminade University of Honolulu, 3140 Waialae Ave, 96816, Honolulu, HI, USA
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.4861.b schema:alternateName University of Liège
236 schema:name CART, Organic and Biological Analytical Chemistry Group, University of Liège, Allée du six Août, B6c, Quartier Agora 11, Sart-Tilman, 4000, Liège, Belgium
237 Pathological Anatomy and Cytology Laboratory, University of Liège, CHU B23, 4000, Liège, Belgium
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...