Use of a Headspace Solid-Phase Microextraction-Based Methodology Followed by Gas Chromatography–Tandem Mass Spectrometry for Pesticide Multiresidue Determination in Teas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

Jianxun Li, Zijuan Zhang, Mengyuan Sun, Bolun Zhang, Chunlin Fan

ABSTRACT

This study reports on the development of a fast and efficient method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–tandem mass spectrometry (GC–MS/MS) for simultaneous analysis of 128 volatile or semi-volatile pesticide residues belonging to nine classes of pesticides. The important factors related to HS-SPME performance were optimized; these factors include fiber types, water volume, ion strength, extraction temperature, and extraction time. The best extraction conditions include a PDMS/DVB fiber, and analytes were extracted at 90 °C for 60 min from 1 g of tea added to 5 mL of 0.2 g mL−1 NaCl solution. The methodology was validated using tea samples spiked with pesticides at three concentration levels (10, 50, and 100 μg kg−1). In green tea, oolong tea, black tea, and puer tea, 82.8, 88.3, 79.7, and 84.3% of the targeted pesticides meet recoveries ranging from 70 to 120% with a relative standard deviation of ≤ 20%, respectively, when spiked at a level of 10 μg kg−1. Limits of quantification in this method for most of the pesticides were 1 or 5 μg kg−1, which are far below their maximum residue limits prescribed by EU. The optimized method was employed to analyze 30 commercial samples obtained from local markets; 17 pesticide residues were detected at concentrations of 2–452 μg kg−1. Chlorpyrifos was the most detected pesticide in 80% of the samples, and the highest concentration of dicofol (452 μg kg−1) was found in a puer tea. This is the first time to find that the optimized extraction temperature for pesticide residues is 90 °C, which is much higher than other reported HS-SPME extraction conditions in tea samples. This developed method could be used to screen over one hundred volatile or semi-volatile pesticide residues which belong to multiple classes in tea samples, and it is an accurate and reliable technique. More... »

PAGES

809-821

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10337-018-3499-z

DOI

http://dx.doi.org/10.1007/s10337-018-3499-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101521875


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Inspection and Quarantine", 
          "id": "https://www.grid.ac/institutes/grid.418544.8", 
          "name": [
            "School of Food and Chemical Engineering, Beijing Technology and Business University, 100048, Beijing, China", 
            "Chinese Academy of Inspection and Quarantine, 100176, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jianxun", 
        "id": "sg:person.014210256255.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014210256255.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Inspection and Quarantine", 
          "id": "https://www.grid.ac/institutes/grid.418544.8", 
          "name": [
            "Chinese Academy of Inspection and Quarantine, 100176, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zijuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "College of Chemistry and Environmental Science, Hebei University, 071002, Baoding, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Mengyuan", 
        "id": "sg:person.07675526455.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07675526455.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Inspection and Quarantine", 
          "id": "https://www.grid.ac/institutes/grid.418544.8", 
          "name": [
            "School of Food and Chemical Engineering, Beijing Technology and Business University, 100048, Beijing, China", 
            "Chinese Academy of Inspection and Quarantine, 100176, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Bolun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Inspection and Quarantine", 
          "id": "https://www.grid.ac/institutes/grid.418544.8", 
          "name": [
            "Chinese Academy of Inspection and Quarantine, 100176, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Chunlin", 
        "id": "sg:person.01177005560.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177005560.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aca.2016.06.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004471721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2010.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006143500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ay01478f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008219773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2017.01.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008277486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2004.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008699041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2016.03.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014378399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01635581.2013.767367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015036451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ay03053b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016484955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jchromb.2016.04.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017499661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2016.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018215955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/chromsci/42.6.310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018701971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2006.10.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019329414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.201401174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024112499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2009.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024969246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2ay25749a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025115453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2014.03.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026373261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2013.07.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027885810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2014.07.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029314772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jchromb.2016.07.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031037515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2015.08.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035824439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-004-2879-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037375090", 
          "https://doi.org/10.1007/s00216-004-2879-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.201000489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037941597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2016.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038399424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2016.08.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042573160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodres.2014.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045981757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2116/analsci.29.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046497110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodcont.2015.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049895283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-009-2632-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050161965", 
          "https://doi.org/10.1007/s00216-009-2632-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-009-2632-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050161965", 
          "https://doi.org/10.1007/s00216-009-2632-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2014.06.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053077732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jafc.5b02860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055095212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jafc.6b05407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079395182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.201700046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084013819"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "This study reports on the development of a fast and efficient method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography\u2013tandem mass spectrometry (GC\u2013MS/MS) for simultaneous analysis of 128 volatile or semi-volatile pesticide residues belonging to nine classes of pesticides. The important factors related to HS-SPME performance were optimized; these factors include fiber types, water volume, ion strength, extraction temperature, and extraction time. The best extraction conditions include a PDMS/DVB fiber, and analytes were extracted at 90 \u00b0C for 60 min from 1 g of tea added to 5 mL of 0.2 g mL\u22121 NaCl solution. The methodology was validated using tea samples spiked with pesticides at three concentration levels (10, 50, and 100 \u03bcg kg\u22121). In green tea, oolong tea, black tea, and puer tea, 82.8, 88.3, 79.7, and 84.3% of the targeted pesticides meet recoveries ranging from 70 to 120% with a relative standard deviation of \u2264 20%, respectively, when spiked at a level of 10 \u03bcg kg\u22121. Limits of quantification in this method for most of the pesticides were 1 or 5 \u03bcg kg\u22121, which are far below their maximum residue limits prescribed by EU. The optimized method was employed to analyze 30 commercial samples obtained from local markets; 17 pesticide residues were detected at concentrations of 2\u2013452 \u03bcg kg\u22121. Chlorpyrifos was the most detected pesticide in 80% of the samples, and the highest concentration of dicofol (452 \u03bcg kg\u22121) was found in a puer tea. This is the first time to find that the optimized extraction temperature for pesticide residues is 90 \u00b0C, which is much higher than other reported HS-SPME extraction conditions in tea samples. This developed method could be used to screen over one hundred volatile or semi-volatile pesticide residues which belong to multiple classes in tea samples, and it is an accurate and reliable technique.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10337-018-3499-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1015080", 
        "issn": [
          "0009-5893", 
          "1612-1112"
        ], 
        "name": "Chromatographia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "81"
      }
    ], 
    "name": "Use of a Headspace Solid-Phase Microextraction-Based Methodology Followed by Gas Chromatography\u2013Tandem Mass Spectrometry for Pesticide Multiresidue Determination in Teas", 
    "pagination": "809-821", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7ae068313fd2e8d21df8a936e6e132c23760df588bd168f6e73f869bbf32f7a7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10337-018-3499-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101521875"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10337-018-3499-z", 
      "https://app.dimensions.ai/details/publication/pub.1101521875"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127463_00000010.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10337-018-3499-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10337-018-3499-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10337-018-3499-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10337-018-3499-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10337-018-3499-z'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10337-018-3499-z schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N41f80059db5d431cafaa60c31edc382b
4 schema:citation sg:pub.10.1007/s00216-004-2879-4
5 sg:pub.10.1007/s00216-009-2632-0
6 https://doi.org/10.1002/jssc.201000489
7 https://doi.org/10.1002/jssc.201401174
8 https://doi.org/10.1002/jssc.201700046
9 https://doi.org/10.1016/j.aca.2016.06.041
10 https://doi.org/10.1016/j.chemosphere.2016.04.004
11 https://doi.org/10.1016/j.chroma.2006.10.084
12 https://doi.org/10.1016/j.chroma.2013.07.071
13 https://doi.org/10.1016/j.chroma.2014.03.057
14 https://doi.org/10.1016/j.chroma.2014.06.104
15 https://doi.org/10.1016/j.chroma.2016.03.074
16 https://doi.org/10.1016/j.foodchem.2004.11.025
17 https://doi.org/10.1016/j.foodchem.2014.07.102
18 https://doi.org/10.1016/j.foodchem.2015.08.051
19 https://doi.org/10.1016/j.foodchem.2016.08.017
20 https://doi.org/10.1016/j.foodcont.2015.05.036
21 https://doi.org/10.1016/j.foodres.2014.01.008
22 https://doi.org/10.1016/j.jchromb.2016.04.053
23 https://doi.org/10.1016/j.jchromb.2016.07.043
24 https://doi.org/10.1016/j.talanta.2009.12.008
25 https://doi.org/10.1016/j.talanta.2010.06.016
26 https://doi.org/10.1016/j.talanta.2016.08.077
27 https://doi.org/10.1016/j.talanta.2017.01.042
28 https://doi.org/10.1021/acs.jafc.5b02860
29 https://doi.org/10.1021/acs.jafc.6b05407
30 https://doi.org/10.1039/c2ay25749a
31 https://doi.org/10.1039/c4ay03053b
32 https://doi.org/10.1039/c5ay01478f
33 https://doi.org/10.1080/01635581.2013.767367
34 https://doi.org/10.1093/chromsci/42.6.310
35 https://doi.org/10.2116/analsci.29.919
36 schema:datePublished 2018-05
37 schema:datePublishedReg 2018-05-01
38 schema:description This study reports on the development of a fast and efficient method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–tandem mass spectrometry (GC–MS/MS) for simultaneous analysis of 128 volatile or semi-volatile pesticide residues belonging to nine classes of pesticides. The important factors related to HS-SPME performance were optimized; these factors include fiber types, water volume, ion strength, extraction temperature, and extraction time. The best extraction conditions include a PDMS/DVB fiber, and analytes were extracted at 90 °C for 60 min from 1 g of tea added to 5 mL of 0.2 g mL−1 NaCl solution. The methodology was validated using tea samples spiked with pesticides at three concentration levels (10, 50, and 100 μg kg−1). In green tea, oolong tea, black tea, and puer tea, 82.8, 88.3, 79.7, and 84.3% of the targeted pesticides meet recoveries ranging from 70 to 120% with a relative standard deviation of ≤ 20%, respectively, when spiked at a level of 10 μg kg−1. Limits of quantification in this method for most of the pesticides were 1 or 5 μg kg−1, which are far below their maximum residue limits prescribed by EU. The optimized method was employed to analyze 30 commercial samples obtained from local markets; 17 pesticide residues were detected at concentrations of 2–452 μg kg−1. Chlorpyrifos was the most detected pesticide in 80% of the samples, and the highest concentration of dicofol (452 μg kg−1) was found in a puer tea. This is the first time to find that the optimized extraction temperature for pesticide residues is 90 °C, which is much higher than other reported HS-SPME extraction conditions in tea samples. This developed method could be used to screen over one hundred volatile or semi-volatile pesticide residues which belong to multiple classes in tea samples, and it is an accurate and reliable technique.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N71aa722b33104a05b022aa87d001f5df
43 Nf2376c222336432e9a8fd8f1a0fe57ef
44 sg:journal.1015080
45 schema:name Use of a Headspace Solid-Phase Microextraction-Based Methodology Followed by Gas Chromatography–Tandem Mass Spectrometry for Pesticide Multiresidue Determination in Teas
46 schema:pagination 809-821
47 schema:productId N5c3ee52ec7604db7a2e0c2c2c46a713c
48 N6b24f96ddcff4c99ad8fe6ffdfd0bb9a
49 N79326f67ec6a4c0ca0e9812f46a246cc
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101521875
51 https://doi.org/10.1007/s10337-018-3499-z
52 schema:sdDatePublished 2019-04-11T11:48
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Na3438aaff0984490b4941e3ac80cdefa
55 schema:url https://link.springer.com/10.1007%2Fs10337-018-3499-z
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N41f80059db5d431cafaa60c31edc382b rdf:first sg:person.014210256255.05
60 rdf:rest N53aa2ca1e2994b2bab035feaee44f9eb
61 N53aa2ca1e2994b2bab035feaee44f9eb rdf:first Nebd1d6b0dcb047e492cd80ed780d2b8d
62 rdf:rest N8ad8fc617cbb433d857e95fcb9f03a50
63 N5c3ee52ec7604db7a2e0c2c2c46a713c schema:name dimensions_id
64 schema:value pub.1101521875
65 rdf:type schema:PropertyValue
66 N6b24f96ddcff4c99ad8fe6ffdfd0bb9a schema:name doi
67 schema:value 10.1007/s10337-018-3499-z
68 rdf:type schema:PropertyValue
69 N71aa722b33104a05b022aa87d001f5df schema:volumeNumber 81
70 rdf:type schema:PublicationVolume
71 N79326f67ec6a4c0ca0e9812f46a246cc schema:name readcube_id
72 schema:value 7ae068313fd2e8d21df8a936e6e132c23760df588bd168f6e73f869bbf32f7a7
73 rdf:type schema:PropertyValue
74 N8ad8fc617cbb433d857e95fcb9f03a50 rdf:first sg:person.07675526455.47
75 rdf:rest Nde45ac6ac8894182a8ec0030d22d783b
76 Na3438aaff0984490b4941e3ac80cdefa schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nb388f38b504b490289b9caca46eda1c4 rdf:first sg:person.01177005560.31
79 rdf:rest rdf:nil
80 Nd333a772078e4fb5b4b0b02d77b253c9 schema:affiliation https://www.grid.ac/institutes/grid.418544.8
81 schema:familyName Zhang
82 schema:givenName Bolun
83 rdf:type schema:Person
84 Nde45ac6ac8894182a8ec0030d22d783b rdf:first Nd333a772078e4fb5b4b0b02d77b253c9
85 rdf:rest Nb388f38b504b490289b9caca46eda1c4
86 Nebd1d6b0dcb047e492cd80ed780d2b8d schema:affiliation https://www.grid.ac/institutes/grid.418544.8
87 schema:familyName Zhang
88 schema:givenName Zijuan
89 rdf:type schema:Person
90 Nf2376c222336432e9a8fd8f1a0fe57ef schema:issueNumber 5
91 rdf:type schema:PublicationIssue
92 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
93 schema:name Chemical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
96 schema:name Analytical Chemistry
97 rdf:type schema:DefinedTerm
98 sg:journal.1015080 schema:issn 0009-5893
99 1612-1112
100 schema:name Chromatographia
101 rdf:type schema:Periodical
102 sg:person.01177005560.31 schema:affiliation https://www.grid.ac/institutes/grid.418544.8
103 schema:familyName Fan
104 schema:givenName Chunlin
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177005560.31
106 rdf:type schema:Person
107 sg:person.014210256255.05 schema:affiliation https://www.grid.ac/institutes/grid.418544.8
108 schema:familyName Li
109 schema:givenName Jianxun
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014210256255.05
111 rdf:type schema:Person
112 sg:person.07675526455.47 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
113 schema:familyName Sun
114 schema:givenName Mengyuan
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07675526455.47
116 rdf:type schema:Person
117 sg:pub.10.1007/s00216-004-2879-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037375090
118 https://doi.org/10.1007/s00216-004-2879-4
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00216-009-2632-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050161965
121 https://doi.org/10.1007/s00216-009-2632-0
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/jssc.201000489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037941597
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/jssc.201401174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024112499
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/jssc.201700046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084013819
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.aca.2016.06.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004471721
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.chemosphere.2016.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038399424
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.chroma.2006.10.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019329414
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.chroma.2013.07.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027885810
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.chroma.2014.03.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026373261
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.chroma.2014.06.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053077732
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.chroma.2016.03.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014378399
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.foodchem.2004.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008699041
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.foodchem.2014.07.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029314772
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.foodchem.2015.08.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035824439
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.foodchem.2016.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018215955
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.foodcont.2015.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049895283
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.foodres.2014.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045981757
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jchromb.2016.04.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017499661
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jchromb.2016.07.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031037515
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.talanta.2009.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024969246
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.talanta.2010.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006143500
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.talanta.2016.08.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042573160
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.talanta.2017.01.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008277486
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/acs.jafc.5b02860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055095212
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/acs.jafc.6b05407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079395182
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1039/c2ay25749a schema:sameAs https://app.dimensions.ai/details/publication/pub.1025115453
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1039/c4ay03053b schema:sameAs https://app.dimensions.ai/details/publication/pub.1016484955
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1039/c5ay01478f schema:sameAs https://app.dimensions.ai/details/publication/pub.1008219773
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1080/01635581.2013.767367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015036451
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/chromsci/42.6.310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018701971
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2116/analsci.29.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046497110
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.256885.4 schema:alternateName Hebei University
184 schema:name College of Chemistry and Environmental Science, Hebei University, 071002, Baoding, China
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.418544.8 schema:alternateName Chinese Academy of Inspection and Quarantine
187 schema:name Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
188 School of Food and Chemical Engineering, Beijing Technology and Business University, 100048, Beijing, China
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...