Characterization of Volatile Organic Metabolites in Lung Cancer Pleural Effusions by SPME–GC/MS Combined with an Untargeted Metabolomic Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-07-11

AUTHORS

Huijun Liu, Caixia Li, Hong Wang, Zhongping Huang, Peipei Zhang, Zaifa Pan, Lili Wang

ABSTRACT

Headspace solid-phase microextraction and gas chromatography/mass spectrometry (HS-SPME–GC/MS) method combined with XCMS Online was tentatively applied to characterize the dysregulated volatile organic metabolites (VOMs) in benign and malignant pleural effusions. A total of 9 dysregulated feature groups were isolated from metabolic features in 35 pleural effusion samples (20 benign effusions and 15 malignant ones from lung cancer patients). Principle component analysis, partial least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA were built to separate benign from malignant pleural effusion groups and to find dysregulated metabolites in significantly different amounts between the two groups. Four dysregulated VOMs such as 2-ethyl-1-hexanol, cyclohexanone, 1,2,4,5-tetramethylbenzene and naphthalene were selected according to the variable influence on the projection value. The concentration of the four dysregulated VOMs in benign and malignant effusions were further determined by external standard method. The median concentrations of 4 VOMs in malignant effusion samples were from 4.7 to 91,121.9 nM, whereas their median levels were only 1.9–318.3 nM in benign ones. The results show that the proposed SPME–GC/MS-based metabolomic approach combined with XCMS Online data processing is a simple, rapid and available method for the characterization of dysregulated VOMs in malignant and benign pleural effusions. More... »

PAGES

1379-1386

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10337-014-2720-y

DOI

http://dx.doi.org/10.1007/s10337-014-2720-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011503379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Huijun", 
        "id": "sg:person.01365450712.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365450712.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Caixia", 
        "id": "sg:person.0710160012.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710160012.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Respiratory Department, Zhejiang Provincial People\u2019s Hospital, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.417401.7", 
          "name": [
            "Respiratory Department, Zhejiang Provincial People\u2019s Hospital, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hong", 
        "id": "sg:person.0642044612.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642044612.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Zhongping", 
        "id": "sg:person.0711623345.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711623345.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Peipei", 
        "id": "sg:person.013447113161.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447113161.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Zaifa", 
        "id": "sg:person.01074655723.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074655723.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lili", 
        "id": "sg:person.01102463413.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102463413.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11306-013-0523-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018534429", 
          "https://doi.org/10.1007/s11306-013-0523-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2047-783x-14-s4-128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019206341", 
          "https://doi.org/10.1186/2047-783x-14-s4-128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2011.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021064661", 
          "https://doi.org/10.1038/bjc.2011.437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-012-6432-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009343841", 
          "https://doi.org/10.1007/s00216-012-6432-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4551054a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027018706", 
          "https://doi.org/10.1038/4551054a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12127-010-0049-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025853921", 
          "https://doi.org/10.1007/s12127-010-0049-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-07-11", 
    "datePublishedReg": "2014-07-11", 
    "description": "Headspace solid-phase microextraction and gas chromatography/mass spectrometry (HS-SPME\u2013GC/MS) method combined with XCMS Online was tentatively applied to characterize the dysregulated volatile organic metabolites (VOMs) in benign and malignant pleural effusions. A total of 9 dysregulated feature groups were isolated from metabolic features in 35 pleural effusion samples (20 benign effusions and 15 malignant ones from lung cancer patients). Principle component analysis, partial least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA were built to separate benign from malignant pleural effusion groups and to find dysregulated metabolites in significantly different amounts between the two groups. Four dysregulated VOMs such as 2-ethyl-1-hexanol, cyclohexanone, 1,2,4,5-tetramethylbenzene and naphthalene were selected according to the variable influence on the projection value. The concentration of the four dysregulated VOMs in benign and malignant effusions were further determined by external standard method. The median concentrations of 4 VOMs in malignant effusion samples were from 4.7 to 91,121.9\u00a0nM, whereas their median levels were only 1.9\u2013318.3\u00a0nM in benign ones. The results show that the proposed SPME\u2013GC/MS-based metabolomic approach combined with XCMS Online data processing is a simple, rapid and available method for the characterization of dysregulated VOMs in malignant and benign pleural effusions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10337-014-2720-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1015080", 
        "issn": [
          "0009-5893", 
          "1612-1112"
        ], 
        "name": "Chromatographia", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "19-20", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "keywords": [
      "volatile organic metabolites", 
      "SPME-GC/MS", 
      "headspace solid-phase microextraction", 
      "solid-phase microextraction", 
      "gas chromatography/mass spectrometry method", 
      "chromatography/mass spectrometry method", 
      "organic metabolites", 
      "mass spectrometry method", 
      "external standard method", 
      "spectrometry method", 
      "untargeted metabolomics method", 
      "orthogonal PLS-DA", 
      "lung cancer pleural effusions", 
      "XCMS Online", 
      "different amounts", 
      "MS", 
      "microextraction", 
      "partial least squares discriminant analysis", 
      "characterization", 
      "cyclohexanone", 
      "malignant pleural effusion group", 
      "squares discriminant analysis", 
      "malignant effusion samples", 
      "PLS-DA", 
      "naphthalene", 
      "metabolomics method", 
      "metabolomics approach", 
      "concentration", 
      "metabolites", 
      "nM", 
      "samples", 
      "method", 
      "median concentrations", 
      "standard methods", 
      "principle component analysis", 
      "available methods", 
      "amount", 
      "group", 
      "component analysis", 
      "projection values", 
      "analysis", 
      "influence", 
      "values", 
      "pleural effusion group", 
      "discriminant analysis", 
      "results", 
      "variable influence", 
      "one", 
      "processing", 
      "features", 
      "approach", 
      "pleural effusion samples", 
      "online data processing", 
      "data processing", 
      "levels", 
      "effusion samples", 
      "metabolic features", 
      "benign pleural effusion", 
      "median levels", 
      "benign ones", 
      "effusion group", 
      "feature groups", 
      "Online", 
      "total", 
      "effusion", 
      "malignant effusions", 
      "pleural effusion", 
      "malignant pleural effusion", 
      "least squares discriminant analysis", 
      "XCMS Online data processing", 
      "Cancer Pleural Effusions"
    ], 
    "name": "Characterization of Volatile Organic Metabolites in Lung Cancer Pleural Effusions by SPME\u2013GC/MS Combined with an Untargeted Metabolomic Method", 
    "pagination": "1379-1386", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011503379"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10337-014-2720-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10337-014-2720-y", 
      "https://app.dimensions.ai/details/publication/pub.1011503379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_643.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10337-014-2720-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10337-014-2720-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10337-014-2720-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10337-014-2720-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10337-014-2720-y'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      22 PREDICATES      102 URIs      88 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10337-014-2720-y schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N7f443de1aad048a786167c4a7c588aa6
4 schema:citation sg:pub.10.1007/s00216-012-6432-6
5 sg:pub.10.1007/s11306-013-0523-z
6 sg:pub.10.1007/s12127-010-0049-2
7 sg:pub.10.1038/4551054a
8 sg:pub.10.1038/bjc.2011.437
9 sg:pub.10.1186/2047-783x-14-s4-128
10 schema:datePublished 2014-07-11
11 schema:datePublishedReg 2014-07-11
12 schema:description Headspace solid-phase microextraction and gas chromatography/mass spectrometry (HS-SPME–GC/MS) method combined with XCMS Online was tentatively applied to characterize the dysregulated volatile organic metabolites (VOMs) in benign and malignant pleural effusions. A total of 9 dysregulated feature groups were isolated from metabolic features in 35 pleural effusion samples (20 benign effusions and 15 malignant ones from lung cancer patients). Principle component analysis, partial least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA were built to separate benign from malignant pleural effusion groups and to find dysregulated metabolites in significantly different amounts between the two groups. Four dysregulated VOMs such as 2-ethyl-1-hexanol, cyclohexanone, 1,2,4,5-tetramethylbenzene and naphthalene were selected according to the variable influence on the projection value. The concentration of the four dysregulated VOMs in benign and malignant effusions were further determined by external standard method. The median concentrations of 4 VOMs in malignant effusion samples were from 4.7 to 91,121.9 nM, whereas their median levels were only 1.9–318.3 nM in benign ones. The results show that the proposed SPME–GC/MS-based metabolomic approach combined with XCMS Online data processing is a simple, rapid and available method for the characterization of dysregulated VOMs in malignant and benign pleural effusions.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N600d0d4ec3be47c1b806f72a63a749b1
17 N9601c70cb9db4bb8a1f6695ea0bec231
18 sg:journal.1015080
19 schema:keywords Cancer Pleural Effusions
20 MS
21 Online
22 PLS-DA
23 SPME-GC/MS
24 XCMS Online
25 XCMS Online data processing
26 amount
27 analysis
28 approach
29 available methods
30 benign ones
31 benign pleural effusion
32 characterization
33 chromatography/mass spectrometry method
34 component analysis
35 concentration
36 cyclohexanone
37 data processing
38 different amounts
39 discriminant analysis
40 effusion
41 effusion group
42 effusion samples
43 external standard method
44 feature groups
45 features
46 gas chromatography/mass spectrometry method
47 group
48 headspace solid-phase microextraction
49 influence
50 least squares discriminant analysis
51 levels
52 lung cancer pleural effusions
53 malignant effusion samples
54 malignant effusions
55 malignant pleural effusion
56 malignant pleural effusion group
57 mass spectrometry method
58 median concentrations
59 median levels
60 metabolic features
61 metabolites
62 metabolomics approach
63 metabolomics method
64 method
65 microextraction
66 nM
67 naphthalene
68 one
69 online data processing
70 organic metabolites
71 orthogonal PLS-DA
72 partial least squares discriminant analysis
73 pleural effusion
74 pleural effusion group
75 pleural effusion samples
76 principle component analysis
77 processing
78 projection values
79 results
80 samples
81 solid-phase microextraction
82 spectrometry method
83 squares discriminant analysis
84 standard methods
85 total
86 untargeted metabolomics method
87 values
88 variable influence
89 volatile organic metabolites
90 schema:name Characterization of Volatile Organic Metabolites in Lung Cancer Pleural Effusions by SPME–GC/MS Combined with an Untargeted Metabolomic Method
91 schema:pagination 1379-1386
92 schema:productId N05ecf453b23e49168d20dce58fe319ab
93 N3a4856390e0b497996fd790547d18a68
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011503379
95 https://doi.org/10.1007/s10337-014-2720-y
96 schema:sdDatePublished 2022-01-01T18:34
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Nde0a34a2aedc46ad8f11ec2fdfcc2591
99 schema:url https://doi.org/10.1007/s10337-014-2720-y
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N05ecf453b23e49168d20dce58fe319ab schema:name dimensions_id
104 schema:value pub.1011503379
105 rdf:type schema:PropertyValue
106 N1a4e39c9f32a45e7840a247cd3bf7c08 rdf:first sg:person.0711623345.48
107 rdf:rest N87652aa7ae6d4a7888fbf433bdb626b7
108 N336e3d9aff1c4b41a8d6e9a74ac4bf7c rdf:first sg:person.0642044612.60
109 rdf:rest N1a4e39c9f32a45e7840a247cd3bf7c08
110 N3a4856390e0b497996fd790547d18a68 schema:name doi
111 schema:value 10.1007/s10337-014-2720-y
112 rdf:type schema:PropertyValue
113 N600d0d4ec3be47c1b806f72a63a749b1 schema:issueNumber 19-20
114 rdf:type schema:PublicationIssue
115 N7b4980838b854ac1b4bc6bd51e8f42b2 rdf:first sg:person.01102463413.13
116 rdf:rest rdf:nil
117 N7f443de1aad048a786167c4a7c588aa6 rdf:first sg:person.01365450712.29
118 rdf:rest Nf45183c8ada54ff293bdb9611a947312
119 N87652aa7ae6d4a7888fbf433bdb626b7 rdf:first sg:person.013447113161.95
120 rdf:rest Na058374c5794471f859bad25cde5808c
121 N9601c70cb9db4bb8a1f6695ea0bec231 schema:volumeNumber 77
122 rdf:type schema:PublicationVolume
123 Na058374c5794471f859bad25cde5808c rdf:first sg:person.01074655723.01
124 rdf:rest N7b4980838b854ac1b4bc6bd51e8f42b2
125 Nde0a34a2aedc46ad8f11ec2fdfcc2591 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Nf45183c8ada54ff293bdb9611a947312 rdf:first sg:person.0710160012.15
128 rdf:rest N336e3d9aff1c4b41a8d6e9a74ac4bf7c
129 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
130 schema:name Chemical Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
133 schema:name Analytical Chemistry
134 rdf:type schema:DefinedTerm
135 sg:journal.1015080 schema:issn 0009-5893
136 1612-1112
137 schema:name Chromatographia
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.01074655723.01 schema:affiliation grid-institutes:grid.469325.f
141 schema:familyName Pan
142 schema:givenName Zaifa
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074655723.01
144 rdf:type schema:Person
145 sg:person.01102463413.13 schema:affiliation grid-institutes:grid.469325.f
146 schema:familyName Wang
147 schema:givenName Lili
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102463413.13
149 rdf:type schema:Person
150 sg:person.013447113161.95 schema:affiliation grid-institutes:grid.469325.f
151 schema:familyName Zhang
152 schema:givenName Peipei
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447113161.95
154 rdf:type schema:Person
155 sg:person.01365450712.29 schema:affiliation grid-institutes:grid.469325.f
156 schema:familyName Liu
157 schema:givenName Huijun
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365450712.29
159 rdf:type schema:Person
160 sg:person.0642044612.60 schema:affiliation grid-institutes:grid.417401.7
161 schema:familyName Wang
162 schema:givenName Hong
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642044612.60
164 rdf:type schema:Person
165 sg:person.0710160012.15 schema:affiliation grid-institutes:grid.469325.f
166 schema:familyName Li
167 schema:givenName Caixia
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710160012.15
169 rdf:type schema:Person
170 sg:person.0711623345.48 schema:affiliation grid-institutes:grid.469325.f
171 schema:familyName Huang
172 schema:givenName Zhongping
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711623345.48
174 rdf:type schema:Person
175 sg:pub.10.1007/s00216-012-6432-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009343841
176 https://doi.org/10.1007/s00216-012-6432-6
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s11306-013-0523-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018534429
179 https://doi.org/10.1007/s11306-013-0523-z
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s12127-010-0049-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025853921
182 https://doi.org/10.1007/s12127-010-0049-2
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/4551054a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027018706
185 https://doi.org/10.1038/4551054a
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/bjc.2011.437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021064661
188 https://doi.org/10.1038/bjc.2011.437
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/2047-783x-14-s4-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019206341
191 https://doi.org/10.1186/2047-783x-14-s4-128
192 rdf:type schema:CreativeWork
193 grid-institutes:grid.417401.7 schema:alternateName Respiratory Department, Zhejiang Provincial People’s Hospital, 310014, Hangzhou, China
194 schema:name Respiratory Department, Zhejiang Provincial People’s Hospital, 310014, Hangzhou, China
195 rdf:type schema:Organization
196 grid-institutes:grid.469325.f schema:alternateName College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
197 schema:name College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...