Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-10

AUTHORS

Daniel Müller, Boris Schröder, Jörg Müller

ABSTRACT

The Hazel Grouse Bonasa bonasia is strongly affected by forest dynamics, and populations in many areas within Europe are declining. As a result of the ‘wilding’ concept implemented in the National Park Bavarian Forest, this area is one of the refuges for the species in Germany. Even though the effects of prevailing processes make the situation there particularly interesting, no recent investigation about habitat selection in the rapidly changing environment of the national park has been undertaken. We modelled the species–habitat relationship to derive the important habitat features in the national park as well as factors and critical threshold for monitoring, and to evaluate the predictive power of models based on field surveys compared to an analysis of infrared aerial photographs. We conducted our surveys on 49 plots of 25 ha each where Hazel Grouse was recorded and on an equally sized set of plots with no grouse occurrence, and used this dataset to build a predictive habitat-suitability model using logistic regression with backward stepwise variable selection. Habitat heterogeneity, stand structure, presence of mountain ash and willow, root plates, forest aisles, and young broadleaf stands proved to be predictive habitat variables. After internal validation via bootstrapping, our model shows an AUC value of 0.91 and a correct classification rate of 87%. Considering the methodological difficulties attached to backward selection, we applied Bayesian model averaging as an alternative. This multi-model approach also yielded similar results. To derive simple thresholds for important predictors as a basis for management decisions, we alternatively ran tree-based modelling, which also leads to a very similar selection of predictors. Performance of our different survey approaches was assessed by comparing two independent models with a model including both data resources: one constructed only from field survey data, the other based on data derived from aerial photographs. Models based on field data seem to perform slightly better than those based on aerial photography, but models using both predictor datasets provided the highest predictive accuracy. More... »

PAGES

717-732

References to SciGraph publications

  • 2004-03. Hierarchical Partitioning Public-domain Software in BIODIVERSITY AND CONSERVATION
  • 2001-01. A comparison of satellite data and landscape variables in predicting bird species occurrences in the Greater Yellowstone Ecosystem, USA in LANDSCAPE ECOLOGY
  • 2004-11. Maximally selected two-sample statistics as a new tool for the identification and assessment of habitat factors with an application to breeding-bird communities in oak forests in EUROPEAN JOURNAL OF FOREST RESEARCH
  • 2008-11. The European spruce bark beetle Ips typographus in a national park: from pest to keystone species in BIODIVERSITY AND CONSERVATION
  • 2008-10. Modelling the recent and potential future spatial distribution of the Ring Ouzel (Turdus torquatus) and Blackbird (T. merula) in Switzerland in JOURNAL OF ORNITHOLOGY
  • 2000-05. Regression and model-building in conservation biology, biogeography and ecology: The distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ models in BIODIVERSITY AND CONSERVATION
  • 2007-05. Impact of agricultural subsidies on biodiversity at the landscape level in LANDSCAPE ECOLOGY
  • 2001. Regression Modeling Strategies, With Applications to Linear Models, Logistic Regression, and Survival Analysis in NONE
  • 2002-12. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling in BIODIVERSITY AND CONSERVATION
  • 1989-11. Resampling methods for evaluating classification accuracy of wildlife habitat models in ENVIRONMENTAL MANAGEMENT
  • 2002-09. Habitat evaluation for crested ibis: A GIS-based approach in ECOLOGICAL RESEARCH
  • 2001-03. Nonparametric spatial covariance functions: Estimation and testing in ENVIRONMENTAL AND ECOLOGICAL STATISTICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10336-009-0390-6

    DOI

    http://dx.doi.org/10.1007/s10336-009-0390-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018981790


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Bavarian Forest National Park", 
              "id": "https://www.grid.ac/institutes/grid.452215.5", 
              "name": [
                "Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00fcller", 
            "givenName": "Daniel", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Leibniz Centre for Agricultural Landscape Research", 
              "id": "https://www.grid.ac/institutes/grid.433014.1", 
              "name": [
                "Institute of Geoecology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany", 
                "Leibniz-Centre for Agricultural Landscape Research (ZALF) e.V., Eberswalder Str. 84, 15374, M\u00fcncheberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schr\u00f6der", 
            "givenName": "Boris", 
            "id": "sg:person.012351502327.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351502327.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bavarian Forest National Park", 
              "id": "https://www.grid.ac/institutes/grid.452215.5", 
              "name": [
                "Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00fcller", 
            "givenName": "J\u00f6rg", 
            "id": "sg:person.01200344071.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200344071.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0006-3207(00)00139-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000751199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2006.0906-7590.04596.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000878166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10342-004-0035-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002258173", 
              "https://doi.org/10.1007/s10342-004-0035-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10342-004-0035-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002258173", 
              "https://doi.org/10.1007/s10342-004-0035-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biocon.2003.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003116366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0895-4356(01)00341-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003527336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecolmodel.2006.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006957392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3800(00)00354-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008451757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1600-0587.1993.tb00057.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010019308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009601932481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010920803", 
              "https://doi.org/10.1023/a:1009601932481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecolmodel.2003.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011245392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecolmodel.2003.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011245392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foreco.2008.06.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011444322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10531-008-9409-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011789249", 
              "https://doi.org/10.1007/s10531-008-9409-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10531-008-9409-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011789249", 
              "https://doi.org/10.1007/s10531-008-9409-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/02626667909491834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013900772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2007.0906-7590.05171.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018033976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0021-8901.2004.00897.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018861710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1890/02-3114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020672197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1461-0248.2005.00792.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020875241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1461-0248.2005.00792.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020875241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tree.2006.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021579594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1890/07-1772.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022050168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0016-7363.2005.00672.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024080708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0016-7363.2005.00672.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024080708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecolmodel.2005.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025856426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3800(00)00322-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028453092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3800(92)90003-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031449768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3800(92)90003-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031449768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foreco.2008.09.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031504737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10980-006-9060-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032009720", 
              "https://doi.org/10.1007/s10980-006-9060-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1046/j.1440-1703.2002.00515.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034142085", 
              "https://doi.org/10.1046/j.1440-1703.2002.00515.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1440-1703.2002.00515.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034142085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0021-8901.2004.00896.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034769028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3462-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034876164", 
              "https://doi.org/10.1007/978-1-4757-3462-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3462-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034876164", 
              "https://doi.org/10.1007/978-1-4757-3462-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10336-008-0295-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036393009", 
              "https://doi.org/10.1007/s10336-008-0295-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10336-008-0295-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036393009", 
              "https://doi.org/10.1007/s10336-008-0295-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008119219788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036394112", 
              "https://doi.org/10.1023/a:1008119219788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2486.2007.01461.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040304825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01868317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043742804", 
              "https://doi.org/10.1007/bf01868317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01868317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043742804", 
              "https://doi.org/10.1007/bf01868317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008985925162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044106770", 
              "https://doi.org/10.1023/a:1008985925162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:bioc.0000009515.11717.0b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047726700", 
              "https://doi.org/10.1023/b:bioc.0000009515.11717.0b"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3800(99)00113-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048648276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/07-sts242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049744920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021302930424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050226641", 
              "https://doi.org/10.1023/a:1021302930424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2656.2006.01141.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050394863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/78.3.691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059420201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3287615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062604299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/106186006x133933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064199533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1642/0004-8038(2002)119[0233:huabdo]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068174192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1642/0004-8038(2002)119[0233:huabdo]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068174192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v023.i11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3808148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070461002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2981/0909-6396(2006)12[357:ihsfhg]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070952450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420010657", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095903980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470515075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470515075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2981/wlb.2000.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104032028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109491887", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109491887", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-10", 
        "datePublishedReg": "2009-10-01", 
        "description": "The Hazel Grouse Bonasa bonasia is strongly affected by forest dynamics, and populations in many areas within Europe are declining. As a result of the \u2018wilding\u2019 concept implemented in the National Park Bavarian Forest, this area is one of the refuges for the species in Germany. Even though the effects of prevailing processes make the situation there particularly interesting, no recent investigation about habitat selection in the rapidly changing environment of the national park has been undertaken. We modelled the species\u2013habitat relationship to derive the important habitat features in the national park as well as factors and critical threshold for monitoring, and to evaluate the predictive power of models based on field surveys compared to an analysis of infrared aerial photographs. We conducted our surveys on 49 plots of 25 ha each where Hazel Grouse was recorded and on an equally sized set of plots with no grouse occurrence, and used this dataset to build a predictive habitat-suitability model using logistic regression with backward stepwise variable selection. Habitat heterogeneity, stand structure, presence of mountain ash and willow, root plates, forest aisles, and young broadleaf stands proved to be predictive habitat variables. After internal validation via bootstrapping, our model shows an AUC value of 0.91 and a correct classification rate of 87%. Considering the methodological difficulties attached to backward selection, we applied Bayesian model averaging as an alternative. This multi-model approach also yielded similar results. To derive simple thresholds for important predictors as a basis for management decisions, we alternatively ran tree-based modelling, which also leads to a very similar selection of predictors. Performance of our different survey approaches was assessed by comparing two independent models with a model including both data resources: one constructed only from field survey data, the other based on data derived from aerial photographs. Models based on field data seem to perform slightly better than those based on aerial photography, but models using both predictor datasets provided the highest predictive accuracy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10336-009-0390-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1035137", 
            "issn": [
              "2193-7192", 
              "2193-7206"
            ], 
            "name": "Journal of Ornithology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "150"
          }
        ], 
        "name": "Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest", 
        "pagination": "717-732", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5a711852ce71d47f5cc0c13f5a8838e02d75aa7eb54b68b1c93ea09950d24ec5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10336-009-0390-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018981790"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10336-009-0390-6", 
          "https://app.dimensions.ai/details/publication/pub.1018981790"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13090_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10336-009-0390-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10336-009-0390-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10336-009-0390-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10336-009-0390-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10336-009-0390-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    239 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10336-009-0390-6 schema:about anzsrc-for:06
    2 anzsrc-for:0602
    3 schema:author N9a3aa14cb5244d81800e5622fad3d442
    4 schema:citation sg:pub.10.1007/978-1-4757-3462-1
    5 sg:pub.10.1007/bf01868317
    6 sg:pub.10.1007/s10336-008-0295-9
    7 sg:pub.10.1007/s10342-004-0035-5
    8 sg:pub.10.1007/s10531-008-9409-1
    9 sg:pub.10.1007/s10980-006-9060-8
    10 sg:pub.10.1023/a:1008119219788
    11 sg:pub.10.1023/a:1008985925162
    12 sg:pub.10.1023/a:1009601932481
    13 sg:pub.10.1023/a:1021302930424
    14 sg:pub.10.1023/b:bioc.0000009515.11717.0b
    15 sg:pub.10.1046/j.1440-1703.2002.00515.x
    16 https://app.dimensions.ai/details/publication/pub.1109491887
    17 https://doi.org/10.1002/9780470515075
    18 https://doi.org/10.1016/0304-3800(92)90003-w
    19 https://doi.org/10.1016/j.biocon.2003.07.006
    20 https://doi.org/10.1016/j.ecolmodel.2003.08.006
    21 https://doi.org/10.1016/j.ecolmodel.2005.10.003
    22 https://doi.org/10.1016/j.ecolmodel.2006.07.005
    23 https://doi.org/10.1016/j.foreco.2008.06.018
    24 https://doi.org/10.1016/j.foreco.2008.09.023
    25 https://doi.org/10.1016/j.tree.2006.09.010
    26 https://doi.org/10.1016/s0006-3207(00)00139-7
    27 https://doi.org/10.1016/s0304-3800(00)00322-7
    28 https://doi.org/10.1016/s0304-3800(00)00354-9
    29 https://doi.org/10.1016/s0304-3800(99)00113-1
    30 https://doi.org/10.1016/s0895-4356(01)00341-9
    31 https://doi.org/10.1046/j.1440-1703.2002.00515.x
    32 https://doi.org/10.1080/02626667909491834
    33 https://doi.org/10.1093/biomet/78.3.691
    34 https://doi.org/10.1111/j.0016-7363.2005.00672.x
    35 https://doi.org/10.1111/j.0021-8901.2004.00896.x
    36 https://doi.org/10.1111/j.0021-8901.2004.00897.x
    37 https://doi.org/10.1111/j.1365-2486.2007.01461.x
    38 https://doi.org/10.1111/j.1365-2656.2006.01141.x
    39 https://doi.org/10.1111/j.1461-0248.2005.00792.x
    40 https://doi.org/10.1111/j.1600-0587.1993.tb00057.x
    41 https://doi.org/10.1111/j.2006.0906-7590.04596.x
    42 https://doi.org/10.1111/j.2007.0906-7590.05171.x
    43 https://doi.org/10.1126/science.3287615
    44 https://doi.org/10.1198/106186006x133933
    45 https://doi.org/10.1201/9781420010657
    46 https://doi.org/10.1214/07-sts242
    47 https://doi.org/10.1642/0004-8038(2002)119[0233:huabdo]2.0.co;2
    48 https://doi.org/10.18637/jss.v023.i11
    49 https://doi.org/10.1890/02-3114
    50 https://doi.org/10.1890/07-1772.1
    51 https://doi.org/10.2307/3808148
    52 https://doi.org/10.2981/0909-6396(2006)12[357:ihsfhg]2.0.co;2
    53 https://doi.org/10.2981/wlb.2000.016
    54 schema:datePublished 2009-10
    55 schema:datePublishedReg 2009-10-01
    56 schema:description The Hazel Grouse Bonasa bonasia is strongly affected by forest dynamics, and populations in many areas within Europe are declining. As a result of the ‘wilding’ concept implemented in the National Park Bavarian Forest, this area is one of the refuges for the species in Germany. Even though the effects of prevailing processes make the situation there particularly interesting, no recent investigation about habitat selection in the rapidly changing environment of the national park has been undertaken. We modelled the species–habitat relationship to derive the important habitat features in the national park as well as factors and critical threshold for monitoring, and to evaluate the predictive power of models based on field surveys compared to an analysis of infrared aerial photographs. We conducted our surveys on 49 plots of 25 ha each where Hazel Grouse was recorded and on an equally sized set of plots with no grouse occurrence, and used this dataset to build a predictive habitat-suitability model using logistic regression with backward stepwise variable selection. Habitat heterogeneity, stand structure, presence of mountain ash and willow, root plates, forest aisles, and young broadleaf stands proved to be predictive habitat variables. After internal validation via bootstrapping, our model shows an AUC value of 0.91 and a correct classification rate of 87%. Considering the methodological difficulties attached to backward selection, we applied Bayesian model averaging as an alternative. This multi-model approach also yielded similar results. To derive simple thresholds for important predictors as a basis for management decisions, we alternatively ran tree-based modelling, which also leads to a very similar selection of predictors. Performance of our different survey approaches was assessed by comparing two independent models with a model including both data resources: one constructed only from field survey data, the other based on data derived from aerial photographs. Models based on field data seem to perform slightly better than those based on aerial photography, but models using both predictor datasets provided the highest predictive accuracy.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree true
    60 schema:isPartOf N278222759d0f45cc80389f6eed3ea7f2
    61 N4bfb690f08664c149c85049f51cac45b
    62 sg:journal.1035137
    63 schema:name Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest
    64 schema:pagination 717-732
    65 schema:productId N4ca0932aad1b40caa7e4c14a2467d675
    66 N66176cfe62c644428c69bf2898b38f90
    67 N7e29705363eb4bac82f78d381137d5db
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018981790
    69 https://doi.org/10.1007/s10336-009-0390-6
    70 schema:sdDatePublished 2019-04-11T14:30
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher Nd74db84163b642dbbc2e7576d72a4a08
    73 schema:url http://link.springer.com/10.1007/s10336-009-0390-6
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N278222759d0f45cc80389f6eed3ea7f2 schema:issueNumber 4
    78 rdf:type schema:PublicationIssue
    79 N2f71003aba4540d39b617af55d320389 rdf:first sg:person.01200344071.19
    80 rdf:rest rdf:nil
    81 N4bfb690f08664c149c85049f51cac45b schema:volumeNumber 150
    82 rdf:type schema:PublicationVolume
    83 N4ca0932aad1b40caa7e4c14a2467d675 schema:name doi
    84 schema:value 10.1007/s10336-009-0390-6
    85 rdf:type schema:PropertyValue
    86 N556e6511d8114c4086731356f391f768 rdf:first sg:person.012351502327.93
    87 rdf:rest N2f71003aba4540d39b617af55d320389
    88 N66176cfe62c644428c69bf2898b38f90 schema:name readcube_id
    89 schema:value 5a711852ce71d47f5cc0c13f5a8838e02d75aa7eb54b68b1c93ea09950d24ec5
    90 rdf:type schema:PropertyValue
    91 N7e29705363eb4bac82f78d381137d5db schema:name dimensions_id
    92 schema:value pub.1018981790
    93 rdf:type schema:PropertyValue
    94 N9a3aa14cb5244d81800e5622fad3d442 rdf:first Nab3c01c35cfb40359f3cf79f8d06f0e4
    95 rdf:rest N556e6511d8114c4086731356f391f768
    96 Nab3c01c35cfb40359f3cf79f8d06f0e4 schema:affiliation https://www.grid.ac/institutes/grid.452215.5
    97 schema:familyName Müller
    98 schema:givenName Daniel
    99 rdf:type schema:Person
    100 Nd74db84163b642dbbc2e7576d72a4a08 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Biological Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Ecology
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1035137 schema:issn 2193-7192
    109 2193-7206
    110 schema:name Journal of Ornithology
    111 rdf:type schema:Periodical
    112 sg:person.01200344071.19 schema:affiliation https://www.grid.ac/institutes/grid.452215.5
    113 schema:familyName Müller
    114 schema:givenName Jörg
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200344071.19
    116 rdf:type schema:Person
    117 sg:person.012351502327.93 schema:affiliation https://www.grid.ac/institutes/grid.433014.1
    118 schema:familyName Schröder
    119 schema:givenName Boris
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351502327.93
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-1-4757-3462-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034876164
    123 https://doi.org/10.1007/978-1-4757-3462-1
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf01868317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043742804
    126 https://doi.org/10.1007/bf01868317
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s10336-008-0295-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036393009
    129 https://doi.org/10.1007/s10336-008-0295-9
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s10342-004-0035-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002258173
    132 https://doi.org/10.1007/s10342-004-0035-5
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s10531-008-9409-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011789249
    135 https://doi.org/10.1007/s10531-008-9409-1
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s10980-006-9060-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032009720
    138 https://doi.org/10.1007/s10980-006-9060-8
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1023/a:1008119219788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036394112
    141 https://doi.org/10.1023/a:1008119219788
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1023/a:1008985925162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044106770
    144 https://doi.org/10.1023/a:1008985925162
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1023/a:1009601932481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010920803
    147 https://doi.org/10.1023/a:1009601932481
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1023/a:1021302930424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050226641
    150 https://doi.org/10.1023/a:1021302930424
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1023/b:bioc.0000009515.11717.0b schema:sameAs https://app.dimensions.ai/details/publication/pub.1047726700
    153 https://doi.org/10.1023/b:bioc.0000009515.11717.0b
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1046/j.1440-1703.2002.00515.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034142085
    156 https://doi.org/10.1046/j.1440-1703.2002.00515.x
    157 rdf:type schema:CreativeWork
    158 https://app.dimensions.ai/details/publication/pub.1109491887 schema:CreativeWork
    159 https://doi.org/10.1002/9780470515075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661493
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/0304-3800(92)90003-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031449768
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.biocon.2003.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003116366
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.ecolmodel.2003.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011245392
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.ecolmodel.2005.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025856426
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.ecolmodel.2006.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006957392
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.foreco.2008.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011444322
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.foreco.2008.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031504737
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.tree.2006.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021579594
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0006-3207(00)00139-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000751199
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/s0304-3800(00)00322-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028453092
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/s0304-3800(00)00354-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008451757
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/s0304-3800(99)00113-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048648276
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/s0895-4356(01)00341-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003527336
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1046/j.1440-1703.2002.00515.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034142085
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1080/02626667909491834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013900772
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1093/biomet/78.3.691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420201
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1111/j.0016-7363.2005.00672.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024080708
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1111/j.0021-8901.2004.00896.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034769028
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1111/j.0021-8901.2004.00897.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018861710
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1111/j.1365-2486.2007.01461.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040304825
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1111/j.1365-2656.2006.01141.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050394863
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1111/j.1461-0248.2005.00792.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020875241
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1111/j.1600-0587.1993.tb00057.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010019308
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1111/j.2006.0906-7590.04596.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000878166
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1111/j.2007.0906-7590.05171.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018033976
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1126/science.3287615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062604299
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1198/106186006x133933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199533
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1201/9781420010657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095903980
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1214/07-sts242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049744920
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1642/0004-8038(2002)119[0233:huabdo]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068174192
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.18637/jss.v023.i11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672347
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1890/02-3114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020672197
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1890/07-1772.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022050168
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.2307/3808148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070461002
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.2981/0909-6396(2006)12[357:ihsfhg]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070952450
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.2981/wlb.2000.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104032028
    232 rdf:type schema:CreativeWork
    233 https://www.grid.ac/institutes/grid.433014.1 schema:alternateName Leibniz Centre for Agricultural Landscape Research
    234 schema:name Institute of Geoecology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
    235 Leibniz-Centre for Agricultural Landscape Research (ZALF) e.V., Eberswalder Str. 84, 15374, Müncheberg, Germany
    236 rdf:type schema:Organization
    237 https://www.grid.ac/institutes/grid.452215.5 schema:alternateName Bavarian Forest National Park
    238 schema:name Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
    239 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...