2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04

AUTHORS

Monika Béresová, Andrés Larroza, Estanislao Arana, József Varga, László Balkay, David Moratal

ABSTRACT

OBJECTIVE: To find structural differences between brain metastases of lung and breast cancer, computing their heterogeneity parameters by means of both 2D and 3D texture analysis (TA). MATERIALS AND METHODS: Patients with 58 brain metastases from breast (26) and lung cancer (32) were examined by MR imaging. Brain lesions were manually delineated by 2D ROIs on the slices of contrast-enhanced T1-weighted (CET1) images, and local binary patterns (LBP) maps were created from each region. Histogram-based (minimum, maximum, mean, standard deviation, and variance), and co-occurrence matrix-based (contrast, correlation, energy, entropy, and homogeneity) 2D, weighted average of the 2D slices, and true 3D TA were obtained on the CET1 images and LBP maps. RESULTS: For LBP maps and 2D TA contrast, correlation, energy, and homogeneity were identified as statistically different heterogeneity parameters (SDHPs) between lung and breast metastasis. The weighted 3D TA identified entropy as an additional SDHP. Only two texture indexes (TI) were significantly different with true 3D TA: entropy and energy. All these TIs discriminated between the two tumor types significantly by ROC analysis. For the CET1 images there was no SDHP at all by 3D TA. CONCLUSION: Our results indicate that the used textural analysis methods may help with discriminating between brain metastases of different primary tumors. More... »

PAGES

285-294

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10334-017-0653-9

DOI

http://dx.doi.org/10.1007/s10334-017-0653-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091898384

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28939952


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Debrecen", 
          "id": "https://www.grid.ac/institutes/grid.7122.6", 
          "name": [
            "Division of Radiology, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary", 
            "Division of Nuclear Medicine, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e9resov\u00e1", 
        "givenName": "Monika", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "Department of Medicine, Universitat de Val\u00e8ncia, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larroza", 
        "givenName": "Andr\u00e9s", 
        "id": "sg:person.0701167674.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701167674.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fundaci\u00f3n Instituto Valenciano de Oncolog\u00eda", 
          "id": "https://www.grid.ac/institutes/grid.418082.7", 
          "name": [
            "Department of Radiology, Fundaci\u00f3n Instituto Valenciano de Oncolog\u00eda, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arana", 
        "givenName": "Estanislao", 
        "id": "sg:person.0645512564.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645512564.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Debrecen", 
          "id": "https://www.grid.ac/institutes/grid.7122.6", 
          "name": [
            "Division of Nuclear Medicine, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varga", 
        "givenName": "J\u00f3zsef", 
        "id": "sg:person.01026764062.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026764062.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Debrecen", 
          "id": "https://www.grid.ac/institutes/grid.7122.6", 
          "name": [
            "Division of Nuclear Medicine, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balkay", 
        "givenName": "L\u00e1szl\u00f3", 
        "id": "sg:person.0735130062.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735130062.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.157927.f", 
          "name": [
            "Center for Biomaterials and Tissue Engineering, Universitat Polit\u00e8cnica de Val\u00e8ncia, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moratal", 
        "givenName": "David", 
        "id": "sg:person.01246527424.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246527424.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/nbm.3353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001250807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/572567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001742248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007113272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2016.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011315222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.099861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016081699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4934373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021556639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2009.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022112797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3701-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022449857", 
          "https://doi.org/10.1007/s00330-015-3701-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbcan.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024857966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2011.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029817562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11910-014-0518-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034318178", 
          "https://doi.org/10.1007/s11910-014-0518-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036490823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0069905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037638631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2007.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039474525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039488853", 
          "https://doi.org/10.1038/nrc3261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.116715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041620018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2342-8-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042776146", 
          "https://doi.org/10.1186/1471-2342-8-18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002340100636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043442783", 
          "https://doi.org/10.1007/s002340100636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10014-016-0275-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047042306", 
          "https://doi.org/10.1007/s10014-016-0275-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10014-016-0275-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047042306", 
          "https://doi.org/10.1007/s10014-016-0275-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0145063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047540412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0145063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047540412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurad.2011.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048619742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2013.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050255227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11912-011-0203-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051024544", 
          "https://doi.org/10.1007/s11912-011-0203-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-006-0589-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645429", 
          "https://doi.org/10.1007/s10147-006-0589-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-006-0589-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645429", 
          "https://doi.org/10.1007/s10147-006-0589-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2010.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053057467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053349646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1979.11328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061444219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/016173468100300203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063748705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/016173468100300203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063748705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5121/ijcsit.2012.4615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072616564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2012.120291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078636657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2012.120291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078636657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/2152-7806.111298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078736686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082639033", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ispa.2015.7306049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093927800"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "OBJECTIVE: To find structural differences between brain metastases of lung and breast cancer, computing their heterogeneity parameters by means of both 2D and 3D texture analysis (TA).\nMATERIALS AND METHODS: Patients with 58 brain metastases from breast (26) and lung cancer (32) were examined by MR imaging. Brain lesions were manually delineated by 2D ROIs on the slices of contrast-enhanced T1-weighted (CET1) images, and local binary patterns (LBP) maps were created from each region. Histogram-based (minimum, maximum, mean, standard deviation, and variance), and co-occurrence matrix-based (contrast, correlation, energy, entropy, and homogeneity) 2D, weighted average of the 2D slices, and true 3D TA were obtained on the CET1 images and LBP maps.\nRESULTS: For LBP maps and 2D TA contrast, correlation, energy, and homogeneity were identified as statistically different heterogeneity parameters (SDHPs) between lung and breast metastasis. The weighted 3D TA identified entropy as an additional SDHP. Only two texture indexes (TI) were significantly different with true 3D TA: entropy and energy. All these TIs discriminated between the two tumor types significantly by ROC analysis. For the CET1 images there was no SDHP at all by 3D TA.\nCONCLUSION: Our results indicate that the used textural analysis methods may help with discriminating between brain metastases of different primary tumors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10334-017-0653-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3750395", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1104145", 
        "issn": [
          "0968-5243", 
          "1352-8661"
        ], 
        "name": "Magnetic Resonance Materials in Physics, Biology and Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution", 
    "pagination": "285-294", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "70a11bb659653533d39da3ec329a44f55879e7f21559854ffc8829ea42e83575"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28939952"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9310752"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10334-017-0653-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091898384"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10334-017-0653-9", 
      "https://app.dimensions.ai/details/publication/pub.1091898384"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10334-017-0653-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10334-017-0653-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10334-017-0653-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10334-017-0653-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10334-017-0653-9'


 

This table displays all metadata directly associated to this object as RDF triples.

288 TRIPLES      21 PREDICATES      79 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10334-017-0653-9 schema:about N0aba20eb023247b19e438a2454d78d8e
2 N0e74e1aa6f794028b4c31db176a05a4e
3 N145d2ebf00314793959eb7a8ed32c801
4 N190d7292af3f4a2399fc6035cfff305c
5 N197ff33c24664d8cba54c9b0e7d2b379
6 N2139d3bd53a84e0db35e9b146d9dce03
7 N423283e67a20431b9d63710e82f45bcb
8 N627eb32306174651be6fcd31d87a5af8
9 N675ab250aa3a46cfa3088f1e01e84744
10 Nabef6f6a515544a7be87152d4b4bf4b2
11 Nae6b2fc69c054eeea052bf3d47a3ea6b
12 Nb54e691e61664accab9d98605283e89c
13 Nc42cd7f80b6e4489822720d7e1e973b6
14 Nc8879ee0d65a4a9e8d9e9314379236c2
15 Ne2d647eeda13477696ffeff81c195069
16 Ne8414c44dcd340ca984d9b0d303a5af1
17 anzsrc-for:11
18 anzsrc-for:1112
19 schema:author N9b04500942b148cd8af18766fdb891c5
20 schema:citation sg:pub.10.1007/s002340100636
21 sg:pub.10.1007/s00330-015-3701-8
22 sg:pub.10.1007/s10014-016-0275-3
23 sg:pub.10.1007/s10147-006-0589-y
24 sg:pub.10.1007/s11910-014-0518-9
25 sg:pub.10.1007/s11912-011-0203-y
26 sg:pub.10.1038/nrc3261
27 sg:pub.10.1186/1471-2342-8-18
28 https://app.dimensions.ai/details/publication/pub.1082639033
29 https://doi.org/10.1002/jmri.20969
30 https://doi.org/10.1002/jmri.24913
31 https://doi.org/10.1002/mrm.26029
32 https://doi.org/10.1002/nbm.3353
33 https://doi.org/10.1016/j.artmed.2010.02.006
34 https://doi.org/10.1016/j.bbcan.2009.11.002
35 https://doi.org/10.1016/j.compbiomed.2016.09.011
36 https://doi.org/10.1016/j.crad.2007.03.004
37 https://doi.org/10.1016/j.ejca.2011.12.025
38 https://doi.org/10.1016/j.media.2013.10.005
39 https://doi.org/10.1016/j.neurad.2011.11.002
40 https://doi.org/10.1016/j.patcog.2009.08.017
41 https://doi.org/10.1109/ispa.2015.7306049
42 https://doi.org/10.1109/proc.1979.11328
43 https://doi.org/10.1109/tpami.2002.1017623
44 https://doi.org/10.1118/1.4934373
45 https://doi.org/10.1155/2015/572567
46 https://doi.org/10.1177/016173468100300203
47 https://doi.org/10.1258/ar.2012.120291
48 https://doi.org/10.1371/journal.pone.0069905
49 https://doi.org/10.1371/journal.pone.0145063
50 https://doi.org/10.2967/jnumed.111.099861
51 https://doi.org/10.2967/jnumed.112.116715
52 https://doi.org/10.4103/2152-7806.111298
53 https://doi.org/10.5121/ijcsit.2012.4615
54 schema:datePublished 2018-04
55 schema:datePublishedReg 2018-04-01
56 schema:description OBJECTIVE: To find structural differences between brain metastases of lung and breast cancer, computing their heterogeneity parameters by means of both 2D and 3D texture analysis (TA). MATERIALS AND METHODS: Patients with 58 brain metastases from breast (26) and lung cancer (32) were examined by MR imaging. Brain lesions were manually delineated by 2D ROIs on the slices of contrast-enhanced T1-weighted (CET1) images, and local binary patterns (LBP) maps were created from each region. Histogram-based (minimum, maximum, mean, standard deviation, and variance), and co-occurrence matrix-based (contrast, correlation, energy, entropy, and homogeneity) 2D, weighted average of the 2D slices, and true 3D TA were obtained on the CET1 images and LBP maps. RESULTS: For LBP maps and 2D TA contrast, correlation, energy, and homogeneity were identified as statistically different heterogeneity parameters (SDHPs) between lung and breast metastasis. The weighted 3D TA identified entropy as an additional SDHP. Only two texture indexes (TI) were significantly different with true 3D TA: entropy and energy. All these TIs discriminated between the two tumor types significantly by ROC analysis. For the CET1 images there was no SDHP at all by 3D TA. CONCLUSION: Our results indicate that the used textural analysis methods may help with discriminating between brain metastases of different primary tumors.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf Nd7841c9c64df45698ebc7f8d762ac8d8
61 Nf92e88f3977b4904bfc883ade4ad09c3
62 sg:journal.1104145
63 schema:name 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution
64 schema:pagination 285-294
65 schema:productId N35845ba7ba4142998a9b7175577a63b6
66 N949b8a32569e4c14b9b292783873319d
67 Nd42d3165dad341c2b09340cf7af9a862
68 Nf275e7072a71488f8a5c838c4b1c4f78
69 Nfa985aabe59e47dd8f7ffb6e714761de
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091898384
71 https://doi.org/10.1007/s10334-017-0653-9
72 schema:sdDatePublished 2019-04-10T16:04
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nbd29bfe28e5f41cda9019052afce04d9
75 schema:url http://link.springer.com/10.1007%2Fs10334-017-0653-9
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N0aba20eb023247b19e438a2454d78d8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Breast Neoplasms
81 rdf:type schema:DefinedTerm
82 N0e74e1aa6f794028b4c31db176a05a4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Neoplasm Metastasis
84 rdf:type schema:DefinedTerm
85 N145d2ebf00314793959eb7a8ed32c801 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Image Processing, Computer-Assisted
87 rdf:type schema:DefinedTerm
88 N190d7292af3f4a2399fc6035cfff305c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Brain Neoplasms
90 rdf:type schema:DefinedTerm
91 N197ff33c24664d8cba54c9b0e7d2b379 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Image Interpretation, Computer-Assisted
93 rdf:type schema:DefinedTerm
94 N2139d3bd53a84e0db35e9b146d9dce03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Brain
96 rdf:type schema:DefinedTerm
97 N228a9365474b475dbbb622f62e59950b rdf:first sg:person.0735130062.46
98 rdf:rest N366c6795fb884c33a2fbc5351a8625e7
99 N247329cb670e4c05abc8d9b653d54e7d schema:affiliation https://www.grid.ac/institutes/grid.7122.6
100 schema:familyName Béresová
101 schema:givenName Monika
102 rdf:type schema:Person
103 N35845ba7ba4142998a9b7175577a63b6 schema:name doi
104 schema:value 10.1007/s10334-017-0653-9
105 rdf:type schema:PropertyValue
106 N366c6795fb884c33a2fbc5351a8625e7 rdf:first sg:person.01246527424.87
107 rdf:rest rdf:nil
108 N423283e67a20431b9d63710e82f45bcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Magnetic Resonance Imaging
110 rdf:type schema:DefinedTerm
111 N627eb32306174651be6fcd31d87a5af8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Imaging, Three-Dimensional
113 rdf:type schema:DefinedTerm
114 N675ab250aa3a46cfa3088f1e01e84744 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Contrast Media
116 rdf:type schema:DefinedTerm
117 N88dcc8f4347b4fca9a261045b4853cae rdf:first sg:person.0645512564.28
118 rdf:rest N8b43a99a84ba4c7f8cfa80efa442807d
119 N8b43a99a84ba4c7f8cfa80efa442807d rdf:first sg:person.01026764062.38
120 rdf:rest N228a9365474b475dbbb622f62e59950b
121 N949b8a32569e4c14b9b292783873319d schema:name dimensions_id
122 schema:value pub.1091898384
123 rdf:type schema:PropertyValue
124 N9b04500942b148cd8af18766fdb891c5 rdf:first N247329cb670e4c05abc8d9b653d54e7d
125 rdf:rest Nbfc6e8eb1d4a48f1972cc4473cdb26e5
126 Nabef6f6a515544a7be87152d4b4bf4b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Models, Statistical
128 rdf:type schema:DefinedTerm
129 Nae6b2fc69c054eeea052bf3d47a3ea6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Retrospective Studies
131 rdf:type schema:DefinedTerm
132 Nb54e691e61664accab9d98605283e89c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 Nbd29bfe28e5f41cda9019052afce04d9 schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Nbfc6e8eb1d4a48f1972cc4473cdb26e5 rdf:first sg:person.0701167674.67
138 rdf:rest N88dcc8f4347b4fca9a261045b4853cae
139 Nc42cd7f80b6e4489822720d7e1e973b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Sensitivity and Specificity
141 rdf:type schema:DefinedTerm
142 Nc8879ee0d65a4a9e8d9e9314379236c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Female
144 rdf:type schema:DefinedTerm
145 Nd42d3165dad341c2b09340cf7af9a862 schema:name nlm_unique_id
146 schema:value 9310752
147 rdf:type schema:PropertyValue
148 Nd7841c9c64df45698ebc7f8d762ac8d8 schema:volumeNumber 31
149 rdf:type schema:PublicationVolume
150 Ne2d647eeda13477696ffeff81c195069 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name ROC Curve
152 rdf:type schema:DefinedTerm
153 Ne8414c44dcd340ca984d9b0d303a5af1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Lung Neoplasms
155 rdf:type schema:DefinedTerm
156 Nf275e7072a71488f8a5c838c4b1c4f78 schema:name pubmed_id
157 schema:value 28939952
158 rdf:type schema:PropertyValue
159 Nf92e88f3977b4904bfc883ade4ad09c3 schema:issueNumber 2
160 rdf:type schema:PublicationIssue
161 Nfa985aabe59e47dd8f7ffb6e714761de schema:name readcube_id
162 schema:value 70a11bb659653533d39da3ec329a44f55879e7f21559854ffc8829ea42e83575
163 rdf:type schema:PropertyValue
164 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
165 schema:name Medical and Health Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
168 schema:name Oncology and Carcinogenesis
169 rdf:type schema:DefinedTerm
170 sg:grant.3750395 http://pending.schema.org/fundedItem sg:pub.10.1007/s10334-017-0653-9
171 rdf:type schema:MonetaryGrant
172 sg:journal.1104145 schema:issn 0968-5243
173 1352-8661
174 schema:name Magnetic Resonance Materials in Physics, Biology and Medicine
175 rdf:type schema:Periodical
176 sg:person.01026764062.38 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
177 schema:familyName Varga
178 schema:givenName József
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026764062.38
180 rdf:type schema:Person
181 sg:person.01246527424.87 schema:affiliation https://www.grid.ac/institutes/grid.157927.f
182 schema:familyName Moratal
183 schema:givenName David
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246527424.87
185 rdf:type schema:Person
186 sg:person.0645512564.28 schema:affiliation https://www.grid.ac/institutes/grid.418082.7
187 schema:familyName Arana
188 schema:givenName Estanislao
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645512564.28
190 rdf:type schema:Person
191 sg:person.0701167674.67 schema:affiliation https://www.grid.ac/institutes/grid.5338.d
192 schema:familyName Larroza
193 schema:givenName Andrés
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701167674.67
195 rdf:type schema:Person
196 sg:person.0735130062.46 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
197 schema:familyName Balkay
198 schema:givenName László
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735130062.46
200 rdf:type schema:Person
201 sg:pub.10.1007/s002340100636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043442783
202 https://doi.org/10.1007/s002340100636
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s00330-015-3701-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022449857
205 https://doi.org/10.1007/s00330-015-3701-8
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s10014-016-0275-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047042306
208 https://doi.org/10.1007/s10014-016-0275-3
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s10147-006-0589-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645429
211 https://doi.org/10.1007/s10147-006-0589-y
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s11910-014-0518-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034318178
214 https://doi.org/10.1007/s11910-014-0518-9
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s11912-011-0203-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051024544
217 https://doi.org/10.1007/s11912-011-0203-y
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nrc3261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039488853
220 https://doi.org/10.1038/nrc3261
221 rdf:type schema:CreativeWork
222 sg:pub.10.1186/1471-2342-8-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042776146
223 https://doi.org/10.1186/1471-2342-8-18
224 rdf:type schema:CreativeWork
225 https://app.dimensions.ai/details/publication/pub.1082639033 schema:CreativeWork
226 https://doi.org/10.1002/jmri.20969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053349646
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/jmri.24913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036490823
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/mrm.26029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007113272
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/nbm.3353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001250807
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.artmed.2010.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053057467
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.bbcan.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024857966
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.compbiomed.2016.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011315222
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.crad.2007.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039474525
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.ejca.2011.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029817562
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.media.2013.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050255227
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.neurad.2011.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048619742
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.patcog.2009.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022112797
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1109/ispa.2015.7306049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093927800
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/proc.1979.11328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061444219
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1109/tpami.2002.1017623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742396
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1118/1.4934373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021556639
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1155/2015/572567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001742248
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1177/016173468100300203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063748705
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1258/ar.2012.120291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078636657
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1371/journal.pone.0069905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037638631
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1371/journal.pone.0145063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047540412
267 rdf:type schema:CreativeWork
268 https://doi.org/10.2967/jnumed.111.099861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016081699
269 rdf:type schema:CreativeWork
270 https://doi.org/10.2967/jnumed.112.116715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041620018
271 rdf:type schema:CreativeWork
272 https://doi.org/10.4103/2152-7806.111298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078736686
273 rdf:type schema:CreativeWork
274 https://doi.org/10.5121/ijcsit.2012.4615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072616564
275 rdf:type schema:CreativeWork
276 https://www.grid.ac/institutes/grid.157927.f schema:alternateName Polytechnic University of Valencia
277 schema:name Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.418082.7 schema:alternateName Fundación Instituto Valenciano de Oncología
280 schema:name Department of Radiology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.5338.d schema:alternateName University of Valencia
283 schema:name Department of Medicine, Universitat de València, Valencia, Spain
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.7122.6 schema:alternateName University of Debrecen
286 schema:name Division of Nuclear Medicine, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
287 Division of Radiology, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
288 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...