Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

Jonathan Vappou, Elodie Breton, Philippe Choquet, Christian Goetz, Rémy Willinger, André Constantinesco

ABSTRACT

Magnetic resonance elastography (MRE) is an increasingly used method for non-invasive determination of tissue stiffness. MRE has shown its ability to measure in vivo elasticity or viscoelasticity depending on the chosen rheological model. However, few data exist on quantitative comparison of MRE with reference mechanical measurement techniques. MRE has only been validated on soft homogeneous gels under both Hookean elasticity and linear viscoelasticity assumptions, but comparison studies are lacking concerning viscoelastic properties of complex heterogeneous tissues. In this context, the present study aims at comparing an MRE-based method combined with a wave equation inversion algorithm to rotational rheometry. For this purpose, experiments are performed on in vitro porcine brain tissue. The dynamic behavior of shear storage (G') and loss (G ('')) moduli obtained by both rheometry and MRE at different frequency ranges is similar to that of linear viscoelastic properties of brain tissue found in other studies. This continuity between rheometry and MRE results consolidates the quantitative nature of values found by MRE in terms of viscoelastic parameters of soft heterogeneous tissues. Based on these results, the limits of MRE in terms of frequency range are also discussed. More... »

PAGES

273

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10334-007-0098-7

DOI

http://dx.doi.org/10.1007/s10334-007-0098-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024347509

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18080819


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "In Vitro Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rheology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rotation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sus scrofa", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viscosity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Strasbourg", 
          "id": "https://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Institut de m\u00e9canique des fluides et des solides, UMR 7507 CNRS-Universit\u00e9 Louis Pasteur, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vappou", 
        "givenName": "Jonathan", 
        "id": "sg:person.01246064652.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246064652.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital d'Hautepierre", 
          "id": "https://www.grid.ac/institutes/grid.412201.4", 
          "name": [
            "Service de biophysique et m\u00e9decine nucl\u00e9aire, CHRU Hautepierre, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breton", 
        "givenName": "Elodie", 
        "id": "sg:person.01200506513.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200506513.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital d'Hautepierre", 
          "id": "https://www.grid.ac/institutes/grid.412201.4", 
          "name": [
            "Service de biophysique et m\u00e9decine nucl\u00e9aire, CHRU Hautepierre, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choquet", 
        "givenName": "Philippe", 
        "id": "sg:person.0756166635.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756166635.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital d'Hautepierre", 
          "id": "https://www.grid.ac/institutes/grid.412201.4", 
          "name": [
            "Service de biophysique et m\u00e9decine nucl\u00e9aire, CHRU Hautepierre, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goetz", 
        "givenName": "Christian", 
        "id": "sg:person.0723026313.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723026313.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Strasbourg", 
          "id": "https://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Institut de m\u00e9canique des fluides et des solides, UMR 7507 CNRS-Universit\u00e9 Louis Pasteur, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willinger", 
        "givenName": "R\u00e9my", 
        "id": "sg:person.01231401737.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231401737.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital d'Hautepierre", 
          "id": "https://www.grid.ac/institutes/grid.412201.4", 
          "name": [
            "Service de biophysique et m\u00e9decine nucl\u00e9aire, CHRU Hautepierre, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Constantinesco", 
        "givenName": "Andr\u00e9", 
        "id": "sg:person.0736615570.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736615570.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/1522-2594(200102)45:2<299::aid-mrm1039>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002552748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00387019108018124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008666845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9290(01)00234-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009753573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013067195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2006.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013634294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015037533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021501040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2004.11.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022036705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028052060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.1189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028877322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2402050606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040481971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2006.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049955383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9290(98)00122-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050938583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000244341.16372.08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052863651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000244341.16372.08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052863651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3425588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062121422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1122/1.2207187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062412993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7569924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062647554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.178.6.1781411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069324759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074944357", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077052580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077310595", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "Magnetic resonance elastography (MRE) is an increasingly used method for non-invasive determination of tissue stiffness. MRE has shown its ability to measure in vivo elasticity or viscoelasticity depending on the chosen rheological model. However, few data exist on quantitative comparison of MRE with reference mechanical measurement techniques. MRE has only been validated on soft homogeneous gels under both Hookean elasticity and linear viscoelasticity assumptions, but comparison studies are lacking concerning viscoelastic properties of complex heterogeneous tissues. In this context, the present study aims at comparing an MRE-based method combined with a wave equation inversion algorithm to rotational rheometry. For this purpose, experiments are performed on in vitro porcine brain tissue. The dynamic behavior of shear storage (G') and loss (G ('')) moduli obtained by both rheometry and MRE at different frequency ranges is similar to that of linear viscoelastic properties of brain tissue found in other studies. This continuity between rheometry and MRE results consolidates the quantitative nature of values found by MRE in terms of viscoelastic parameters of soft heterogeneous tissues. Based on these results, the limits of MRE in terms of frequency range are also discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10334-007-0098-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104145", 
        "issn": [
          "0968-5243", 
          "1352-8661"
        ], 
        "name": "Magnetic Resonance Materials in Physics, Biology and Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement", 
    "pagination": "273", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "73fe6a6bc84331b33804dbf6a0342bbaae43f89ceb79d3d1a639f95d55e67fb4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18080819"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9310752"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10334-007-0098-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024347509"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10334-007-0098-7", 
      "https://app.dimensions.ai/details/publication/pub.1024347509"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13106_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10334-007-0098-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10334-007-0098-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10334-007-0098-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10334-007-0098-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10334-007-0098-7'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      60 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10334-007-0098-7 schema:about N2691fef6d7824eb58cc7149271ee7fd4
2 N4784cb4a19674539bc229f3f0339f274
3 N5f309ab49a584fe9938f769d9a322f63
4 N69ed942051614b1996e2cb3fa6258485
5 N86c5f630ba80495ea92bd7d8d716b196
6 Nc90e031a1f764de5b0b5da15f9f6e653
7 Nd10c72fddd1348eaa39513830fe68d8d
8 Nd8deca0975f84129b1849e49a383ce7e
9 Nda7d0185db0f4fc9bf2c3e5286874e23
10 Nfe4991c1cf2948eb908857ba043e7068
11 anzsrc-for:09
12 anzsrc-for:0903
13 schema:author N2e615fd848ba4de4b03e5894d4a40745
14 schema:citation https://app.dimensions.ai/details/publication/pub.1074944357
15 https://app.dimensions.ai/details/publication/pub.1077052580
16 https://app.dimensions.ai/details/publication/pub.1077310595
17 https://doi.org/10.1002/1522-2594(200102)45:2<299::aid-mrm1039>3.0.co;2-o
18 https://doi.org/10.1002/jmri.20817
19 https://doi.org/10.1002/mrm.10343
20 https://doi.org/10.1002/mrm.20449
21 https://doi.org/10.1002/mrm.20991
22 https://doi.org/10.1002/nbm.1189
23 https://doi.org/10.1016/j.actbio.2006.08.007
24 https://doi.org/10.1016/j.jmps.2006.05.004
25 https://doi.org/10.1016/j.mri.2004.11.060
26 https://doi.org/10.1016/s0021-9290(01)00234-2
27 https://doi.org/10.1016/s0021-9290(98)00122-5
28 https://doi.org/10.1080/00387019108018124
29 https://doi.org/10.1097/01.rli.0000244341.16372.08
30 https://doi.org/10.1115/1.3425588
31 https://doi.org/10.1122/1.2207187
32 https://doi.org/10.1126/science.7569924
33 https://doi.org/10.1148/radiol.2402050606
34 https://doi.org/10.2214/ajr.178.6.1781411
35 schema:datePublished 2007-12
36 schema:datePublishedReg 2007-12-01
37 schema:description Magnetic resonance elastography (MRE) is an increasingly used method for non-invasive determination of tissue stiffness. MRE has shown its ability to measure in vivo elasticity or viscoelasticity depending on the chosen rheological model. However, few data exist on quantitative comparison of MRE with reference mechanical measurement techniques. MRE has only been validated on soft homogeneous gels under both Hookean elasticity and linear viscoelasticity assumptions, but comparison studies are lacking concerning viscoelastic properties of complex heterogeneous tissues. In this context, the present study aims at comparing an MRE-based method combined with a wave equation inversion algorithm to rotational rheometry. For this purpose, experiments are performed on in vitro porcine brain tissue. The dynamic behavior of shear storage (G') and loss (G ('')) moduli obtained by both rheometry and MRE at different frequency ranges is similar to that of linear viscoelastic properties of brain tissue found in other studies. This continuity between rheometry and MRE results consolidates the quantitative nature of values found by MRE in terms of viscoelastic parameters of soft heterogeneous tissues. Based on these results, the limits of MRE in terms of frequency range are also discussed.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N78bdf9b501384e6cbd4e4c90e82f46ab
42 N892527dfc764403cbf8dba667cd16ccc
43 sg:journal.1104145
44 schema:name Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement
45 schema:pagination 273
46 schema:productId N067c95d092114e648eb65e955a2508b0
47 N5f460189ba3f4aaca8ff09fcc8315072
48 N7a4ea9eac1b84ca4b156eec0c0370336
49 Nc88f89ea2e924c39b528b356109ab4bc
50 Nfc70203143224fdaae0dc5d81b6c85dc
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024347509
52 https://doi.org/10.1007/s10334-007-0098-7
53 schema:sdDatePublished 2019-04-11T14:33
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Ndc497a99ec5f4a1287cd50225dfa0795
56 schema:url http://link.springer.com/10.1007%2Fs10334-007-0098-7
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N067c95d092114e648eb65e955a2508b0 schema:name doi
61 schema:value 10.1007/s10334-007-0098-7
62 rdf:type schema:PropertyValue
63 N174bad4b0c864f73a52ed2dbe077f4b2 rdf:first sg:person.0736615570.85
64 rdf:rest rdf:nil
65 N2691fef6d7824eb58cc7149271ee7fd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Rheology
67 rdf:type schema:DefinedTerm
68 N26a70cb065a541f3a6e962c7607e3307 rdf:first sg:person.01231401737.36
69 rdf:rest N174bad4b0c864f73a52ed2dbe077f4b2
70 N2e615fd848ba4de4b03e5894d4a40745 rdf:first sg:person.01246064652.11
71 rdf:rest Nd52872b6350a4322951214632b5b23a0
72 N4784cb4a19674539bc229f3f0339f274 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Viscosity
74 rdf:type schema:DefinedTerm
75 N4da314fa3c3c47e7ba8d70dab95b22da rdf:first sg:person.0756166635.85
76 rdf:rest Ne215663f1fb54c2ca4d57e2c1aa40f80
77 N5f309ab49a584fe9938f769d9a322f63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Animals
79 rdf:type schema:DefinedTerm
80 N5f460189ba3f4aaca8ff09fcc8315072 schema:name readcube_id
81 schema:value 73fe6a6bc84331b33804dbf6a0342bbaae43f89ceb79d3d1a639f95d55e67fb4
82 rdf:type schema:PropertyValue
83 N69ed942051614b1996e2cb3fa6258485 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Image Processing, Computer-Assisted
85 rdf:type schema:DefinedTerm
86 N78bdf9b501384e6cbd4e4c90e82f46ab schema:volumeNumber 20
87 rdf:type schema:PublicationVolume
88 N7a4ea9eac1b84ca4b156eec0c0370336 schema:name dimensions_id
89 schema:value pub.1024347509
90 rdf:type schema:PropertyValue
91 N86c5f630ba80495ea92bd7d8d716b196 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Brain
93 rdf:type schema:DefinedTerm
94 N892527dfc764403cbf8dba667cd16ccc schema:issueNumber 5-6
95 rdf:type schema:PublicationIssue
96 Nc88f89ea2e924c39b528b356109ab4bc schema:name pubmed_id
97 schema:value 18080819
98 rdf:type schema:PropertyValue
99 Nc90e031a1f764de5b0b5da15f9f6e653 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name In Vitro Techniques
101 rdf:type schema:DefinedTerm
102 Nd10c72fddd1348eaa39513830fe68d8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Elasticity
104 rdf:type schema:DefinedTerm
105 Nd52872b6350a4322951214632b5b23a0 rdf:first sg:person.01200506513.26
106 rdf:rest N4da314fa3c3c47e7ba8d70dab95b22da
107 Nd8deca0975f84129b1849e49a383ce7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Rotation
109 rdf:type schema:DefinedTerm
110 Nda7d0185db0f4fc9bf2c3e5286874e23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Elasticity Imaging Techniques
112 rdf:type schema:DefinedTerm
113 Ndc497a99ec5f4a1287cd50225dfa0795 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Ne215663f1fb54c2ca4d57e2c1aa40f80 rdf:first sg:person.0723026313.99
116 rdf:rest N26a70cb065a541f3a6e962c7607e3307
117 Nfc70203143224fdaae0dc5d81b6c85dc schema:name nlm_unique_id
118 schema:value 9310752
119 rdf:type schema:PropertyValue
120 Nfe4991c1cf2948eb908857ba043e7068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Sus scrofa
122 rdf:type schema:DefinedTerm
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biomedical Engineering
128 rdf:type schema:DefinedTerm
129 sg:journal.1104145 schema:issn 0968-5243
130 1352-8661
131 schema:name Magnetic Resonance Materials in Physics, Biology and Medicine
132 rdf:type schema:Periodical
133 sg:person.01200506513.26 schema:affiliation https://www.grid.ac/institutes/grid.412201.4
134 schema:familyName Breton
135 schema:givenName Elodie
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200506513.26
137 rdf:type schema:Person
138 sg:person.01231401737.36 schema:affiliation https://www.grid.ac/institutes/grid.11843.3f
139 schema:familyName Willinger
140 schema:givenName Rémy
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231401737.36
142 rdf:type schema:Person
143 sg:person.01246064652.11 schema:affiliation https://www.grid.ac/institutes/grid.11843.3f
144 schema:familyName Vappou
145 schema:givenName Jonathan
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246064652.11
147 rdf:type schema:Person
148 sg:person.0723026313.99 schema:affiliation https://www.grid.ac/institutes/grid.412201.4
149 schema:familyName Goetz
150 schema:givenName Christian
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723026313.99
152 rdf:type schema:Person
153 sg:person.0736615570.85 schema:affiliation https://www.grid.ac/institutes/grid.412201.4
154 schema:familyName Constantinesco
155 schema:givenName André
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736615570.85
157 rdf:type schema:Person
158 sg:person.0756166635.85 schema:affiliation https://www.grid.ac/institutes/grid.412201.4
159 schema:familyName Choquet
160 schema:givenName Philippe
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756166635.85
162 rdf:type schema:Person
163 https://app.dimensions.ai/details/publication/pub.1074944357 schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1077052580 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1077310595 schema:CreativeWork
166 https://doi.org/10.1002/1522-2594(200102)45:2<299::aid-mrm1039>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1002552748
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/jmri.20817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021501040
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/mrm.10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028052060
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/mrm.20449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015037533
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/mrm.20991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013067195
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/nbm.1189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028877322
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.actbio.2006.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013634294
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jmps.2006.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049955383
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.mri.2004.11.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022036705
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0021-9290(01)00234-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009753573
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0021-9290(98)00122-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050938583
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1080/00387019108018124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008666845
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1097/01.rli.0000244341.16372.08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052863651
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1115/1.3425588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062121422
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1122/1.2207187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062412993
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.7569924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062647554
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1148/radiol.2402050606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040481971
199 rdf:type schema:CreativeWork
200 https://doi.org/10.2214/ajr.178.6.1781411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069324759
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.11843.3f schema:alternateName University of Strasbourg
203 schema:name Institut de mécanique des fluides et des solides, UMR 7507 CNRS-Université Louis Pasteur, Strasbourg, France
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.412201.4 schema:alternateName Hôpital d'Hautepierre
206 schema:name Service de biophysique et médecine nucléaire, CHRU Hautepierre, Strasbourg, France
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...