Volumetric analysis of mice lungs in a clinical magnetic resonance imaging scanner View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-10

AUTHORS

Johannes T. Heverhagen, Horst K. Hahn, Michael Wegmann, Udo Herz, Chastity D. Shaffer Whitaker, Volker Matschl, Heiko Alfke

ABSTRACT

Small animal models are widely used to study various pathologies. Magnetic resonance imaging (MRI) allows investigation of these animals in a non-invasive way. Therefore, the aim of our study was to develop and evaluate a low-cost approach to measure lung volumes in small animal MRI using a clinical scanner and a specially designed RF coil. Five mice (three of an established emphysema model and two controls) were investigated in a 1.0-T clinical scanner using a specially built small animal saddle coil and three different three-dimensional sequences; overall imaging time was approximately 16 min. Lung volumes were calculated from these images using an interactive watershed transform algorithm for semi-automatic image segmentation. The gold standard for the volume measurement was water displacement after surgical explantation. MRI measured volumes correlated significantly with ex vivo measurements on the explanted lungs (r = 0.99 to 0.89; p < 0.05). Mean lung volume in emphysema model mice was larger than in controls. High-resolution, small animal MRI using a clinical scanner is feasible for volumetric analysis and provides an alternative to a dedicated small animal scanner. More... »

PAGES

80-85

References to SciGraph publications

  • 2000-02. In-vivo cardiac studies in animals using magnetic resonance techniques: experimental aspects and MR readouts in MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE
  • 2003-07. Imaging of Experimental Rat Gliomas Using a Clinical MR Scanner in JOURNAL OF NEURO-ONCOLOGY
  • 2002-05. Magnetic Resonance Imaging Characterization of Hemorrhagic Transformation of Embolic Stroke in the Rat in JOURNAL OF CEREBRAL BLOOD FLOW & METABOLISM
  • 2002-01. Molecular imaging of small animals with dedicated PET tomographs in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10334-004-0053-9

    DOI

    http://dx.doi.org/10.1007/s10334-004-0053-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036977953

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15480944


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biomedical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Models, Animal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Emphysema", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Failure Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lung Volume Measurements", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Inbred C57BL", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transducers", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Philipp University of Marburg", 
              "id": "https://www.grid.ac/institutes/grid.10253.35", 
              "name": [
                "Department of Diagnostic Radiology, Philipps University, 35033, Marburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heverhagen", 
            "givenName": "Johannes T.", 
            "id": "sg:person.01227341013.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227341013.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Ohio State University", 
              "id": "https://www.grid.ac/institutes/grid.261331.4", 
              "name": [
                "Department of Radiology, The Ohio State University, 1654 Upham Drive, 647 Means Hall, 43210, Columbus, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hahn", 
            "givenName": "Horst K.", 
            "id": "sg:person.0764213163.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764213163.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "MeVis-Center for Medical Diagnostic Systems and Visualization, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wegmann", 
            "givenName": "Michael", 
            "id": "sg:person.01057073775.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057073775.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "MeVis-Center for Medical Diagnostic Systems and Visualization, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herz", 
            "givenName": "Udo", 
            "id": "sg:person.0675412673.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675412673.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Ohio State University", 
              "id": "https://www.grid.ac/institutes/grid.261331.4", 
              "name": [
                "Department of Radiology, The Ohio State University, 1654 Upham Drive, 647 Means Hall, 43210, Columbus, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Whitaker", 
            "givenName": "Chastity D. Shaffer", 
            "id": "sg:person.01005306076.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005306076.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siemens (Germany)", 
              "id": "https://www.grid.ac/institutes/grid.5406.7", 
              "name": [
                "Department of Clinical Chemistry, Philipps University, 35033, Marburg, Germany", 
                "Siemens Medical Solutions, 91052, Erlangen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matschl", 
            "givenName": "Volker", 
            "id": "sg:person.01371621225.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371621225.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Philipp University of Marburg", 
              "id": "https://www.grid.ac/institutes/grid.10253.35", 
              "name": [
                "Department of Diagnostic Radiology, Philipps University, 35033, Marburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alfke", 
            "givenName": "Heiko", 
            "id": "sg:person.0732730137.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732730137.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02678487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005088893", 
              "https://doi.org/10.1007/bf02678487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02678487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005088893", 
              "https://doi.org/10.1007/bf02678487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024241905888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005202807", 
              "https://doi.org/10.1023/a:1024241905888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/sj.neo.7900079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006774337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.2000.15.12.2451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010688912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.1910320215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013616532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0344-0338(99)80052-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014162944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.481097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016849603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-001-0683-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018614151", 
              "https://doi.org/10.1007/s00259-001-0683-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-0270(00)00172-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018952728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-8049(02)00394-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022633040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-8049(02)00394-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022633040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00002142-200108000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025119996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00002142-200108000-00006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025119996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.10913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026543885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.10326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029123315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0361-9230(93)90017-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033455071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0361-9230(93)90017-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033455071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ilar.42.3.248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034242143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0730-725x(97)00273-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037032007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/00004647-200205000-00007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040107624", 
              "https://doi.org/10.1097/00004647-200205000-00007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004647-200205000-00007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040107624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0301-0082(02)00020-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044743669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bioeng.1.1.611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044979311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1352-8661(00)00105-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054696616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1352-8661(01)00147-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054696697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/6.625252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061196287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/10976649909088333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070985776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/physiolgenomics.2001.4.3.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074751858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083347331", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-10", 
        "datePublishedReg": "2004-10-01", 
        "description": "Small animal models are widely used to study various pathologies. Magnetic resonance imaging (MRI) allows investigation of these animals in a non-invasive way. Therefore, the aim of our study was to develop and evaluate a low-cost approach to measure lung volumes in small animal MRI using a clinical scanner and a specially designed RF coil. Five mice (three of an established emphysema model and two controls) were investigated in a 1.0-T clinical scanner using a specially built small animal saddle coil and three different three-dimensional sequences; overall imaging time was approximately 16 min. Lung volumes were calculated from these images using an interactive watershed transform algorithm for semi-automatic image segmentation. The gold standard for the volume measurement was water displacement after surgical explantation. MRI measured volumes correlated significantly with ex vivo measurements on the explanted lungs (r = 0.99 to 0.89; p < 0.05). Mean lung volume in emphysema model mice was larger than in controls. High-resolution, small animal MRI using a clinical scanner is feasible for volumetric analysis and provides an alternative to a dedicated small animal scanner.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10334-004-0053-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1104145", 
            "issn": [
              "0968-5243", 
              "1352-8661"
            ], 
            "name": "Magnetic Resonance Materials in Physics, Biology and Medicine", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Volumetric analysis of mice lungs in a clinical magnetic resonance imaging scanner", 
        "pagination": "80-85", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b026561bf79c0583a9721aeec11159e770b4953da6bfe99fac373201bb53f7e6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15480944"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9310752"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10334-004-0053-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036977953"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10334-004-0053-9", 
          "https://app.dimensions.ai/details/publication/pub.1036977953"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000533.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10334-004-0053-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10334-004-0053-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10334-004-0053-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10334-004-0053-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10334-004-0053-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    247 TRIPLES      21 PREDICATES      66 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10334-004-0053-9 schema:about N03c08d0657c14e148dbf8799203ed5a3
    2 N0dcaab50b00e4bc497a3f905149940b9
    3 N1849386246b9462b9edc05f9e09b1cd1
    4 N4a0c8d64b1504a3eb3d0ebadf1299c89
    5 N9104501ba70449f38b651262d7b14fff
    6 N9748c258afe848188ed5a3dbee2c2fc0
    7 Na995a304c11f4501be2b0b9ceaf622e9
    8 Nb75967aec042486b80f84a02d721f6f3
    9 Ne209fb22bdb145068cc7e0815bb3f468
    10 Neb5b47abea664f5eb660da95213e9932
    11 Nf47a8c402ada48519a41187c7aa01bc2
    12 anzsrc-for:09
    13 anzsrc-for:0903
    14 schema:author N3c8bed2a52774872943d8ba840cf13eb
    15 schema:citation sg:pub.10.1007/bf02678487
    16 sg:pub.10.1007/s00259-001-0683-3
    17 sg:pub.10.1023/a:1024241905888
    18 sg:pub.10.1097/00004647-200205000-00007
    19 https://app.dimensions.ai/details/publication/pub.1083347331
    20 https://doi.org/10.1002/ijc.10913
    21 https://doi.org/10.1002/mrm.10326
    22 https://doi.org/10.1002/mrm.1910320215
    23 https://doi.org/10.1016/0361-9230(93)90017-6
    24 https://doi.org/10.1016/s0165-0270(00)00172-2
    25 https://doi.org/10.1016/s0301-0082(02)00020-5
    26 https://doi.org/10.1016/s0344-0338(99)80052-1
    27 https://doi.org/10.1016/s0730-725x(97)00273-7
    28 https://doi.org/10.1016/s0959-8049(02)00394-5
    29 https://doi.org/10.1016/s1352-8661(00)00105-8
    30 https://doi.org/10.1016/s1352-8661(01)00147-8
    31 https://doi.org/10.1038/sj.neo.7900079
    32 https://doi.org/10.1093/ilar.42.3.248
    33 https://doi.org/10.1097/00002142-200108000-00006
    34 https://doi.org/10.1097/00004647-200205000-00007
    35 https://doi.org/10.1109/6.625252
    36 https://doi.org/10.1117/12.481097
    37 https://doi.org/10.1146/annurev.bioeng.1.1.611
    38 https://doi.org/10.1152/physiolgenomics.2001.4.3.215
    39 https://doi.org/10.1359/jbmr.2000.15.12.2451
    40 https://doi.org/10.3109/10976649909088333
    41 schema:datePublished 2004-10
    42 schema:datePublishedReg 2004-10-01
    43 schema:description Small animal models are widely used to study various pathologies. Magnetic resonance imaging (MRI) allows investigation of these animals in a non-invasive way. Therefore, the aim of our study was to develop and evaluate a low-cost approach to measure lung volumes in small animal MRI using a clinical scanner and a specially designed RF coil. Five mice (three of an established emphysema model and two controls) were investigated in a 1.0-T clinical scanner using a specially built small animal saddle coil and three different three-dimensional sequences; overall imaging time was approximately 16 min. Lung volumes were calculated from these images using an interactive watershed transform algorithm for semi-automatic image segmentation. The gold standard for the volume measurement was water displacement after surgical explantation. MRI measured volumes correlated significantly with ex vivo measurements on the explanted lungs (r = 0.99 to 0.89; p < 0.05). Mean lung volume in emphysema model mice was larger than in controls. High-resolution, small animal MRI using a clinical scanner is feasible for volumetric analysis and provides an alternative to a dedicated small animal scanner.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf N56fe9609c1984e47a55559182330a46c
    48 N7f2eef8793294ebcabffb286900ecc22
    49 sg:journal.1104145
    50 schema:name Volumetric analysis of mice lungs in a clinical magnetic resonance imaging scanner
    51 schema:pagination 80-85
    52 schema:productId N1b2c4f5f4ebb483abbdc051ddfbeabfc
    53 N1d68184cae9a4e168b6caccec3ea8fae
    54 N4bc08d8c58f544a697ab5cfbf93e9edf
    55 N5b985dcb99094c219d3d89fc34a87669
    56 Ndb71f91454224d4e9ca56f031b82cdb3
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036977953
    58 https://doi.org/10.1007/s10334-004-0053-9
    59 schema:sdDatePublished 2019-04-10T18:24
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher Nf2fab7366de2487b8358155ca482f5a6
    62 schema:url http://link.springer.com/10.1007%2Fs10334-004-0053-9
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N00098bcefa154317b33d23513c37010d rdf:first sg:person.01005306076.43
    67 rdf:rest N48ed825fdce24fd4aaf6460dd821a9d4
    68 N03c08d0657c14e148dbf8799203ed5a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Equipment Failure Analysis
    70 rdf:type schema:DefinedTerm
    71 N0dcaab50b00e4bc497a3f905149940b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Mice
    73 rdf:type schema:DefinedTerm
    74 N1849386246b9462b9edc05f9e09b1cd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Lung Volume Measurements
    76 rdf:type schema:DefinedTerm
    77 N1b2c4f5f4ebb483abbdc051ddfbeabfc schema:name pubmed_id
    78 schema:value 15480944
    79 rdf:type schema:PropertyValue
    80 N1d68184cae9a4e168b6caccec3ea8fae schema:name nlm_unique_id
    81 schema:value 9310752
    82 rdf:type schema:PropertyValue
    83 N3c8bed2a52774872943d8ba840cf13eb rdf:first sg:person.01227341013.74
    84 rdf:rest N5fed126a3b0f4075a201430514ce1e2f
    85 N48ed825fdce24fd4aaf6460dd821a9d4 rdf:first sg:person.01371621225.70
    86 rdf:rest N69802a82f4d74535a4237f4d424bdf7c
    87 N4a0c8d64b1504a3eb3d0ebadf1299c89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Reproducibility of Results
    89 rdf:type schema:DefinedTerm
    90 N4bc08d8c58f544a697ab5cfbf93e9edf schema:name dimensions_id
    91 schema:value pub.1036977953
    92 rdf:type schema:PropertyValue
    93 N56fe9609c1984e47a55559182330a46c schema:issueNumber 2
    94 rdf:type schema:PublicationIssue
    95 N5b985dcb99094c219d3d89fc34a87669 schema:name doi
    96 schema:value 10.1007/s10334-004-0053-9
    97 rdf:type schema:PropertyValue
    98 N5ca2d072acaa49f599e31b641ed5d188 rdf:first sg:person.01057073775.47
    99 rdf:rest Nebb2b834eed74db884b814a63dc3c91b
    100 N5fed126a3b0f4075a201430514ce1e2f rdf:first sg:person.0764213163.20
    101 rdf:rest N5ca2d072acaa49f599e31b641ed5d188
    102 N69802a82f4d74535a4237f4d424bdf7c rdf:first sg:person.0732730137.65
    103 rdf:rest rdf:nil
    104 N6cd5e9a16a2949dfaca99aed704b3614 schema:name MeVis-Center for Medical Diagnostic Systems and Visualization, 28359, Bremen, Germany
    105 rdf:type schema:Organization
    106 N7f2eef8793294ebcabffb286900ecc22 schema:volumeNumber 17
    107 rdf:type schema:PublicationVolume
    108 N9104501ba70449f38b651262d7b14fff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Transducers
    110 rdf:type schema:DefinedTerm
    111 N9748c258afe848188ed5a3dbee2c2fc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Disease Models, Animal
    113 rdf:type schema:DefinedTerm
    114 N9f6fc985b99e403e992f885d78af3e13 schema:name MeVis-Center for Medical Diagnostic Systems and Visualization, 28359, Bremen, Germany
    115 rdf:type schema:Organization
    116 Na995a304c11f4501be2b0b9ceaf622e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Equipment Design
    118 rdf:type schema:DefinedTerm
    119 Nb75967aec042486b80f84a02d721f6f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Sensitivity and Specificity
    121 rdf:type schema:DefinedTerm
    122 Ndb71f91454224d4e9ca56f031b82cdb3 schema:name readcube_id
    123 schema:value b026561bf79c0583a9721aeec11159e770b4953da6bfe99fac373201bb53f7e6
    124 rdf:type schema:PropertyValue
    125 Ne209fb22bdb145068cc7e0815bb3f468 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Emphysema
    127 rdf:type schema:DefinedTerm
    128 Neb5b47abea664f5eb660da95213e9932 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Mice, Inbred C57BL
    130 rdf:type schema:DefinedTerm
    131 Nebb2b834eed74db884b814a63dc3c91b rdf:first sg:person.0675412673.89
    132 rdf:rest N00098bcefa154317b33d23513c37010d
    133 Nf2fab7366de2487b8358155ca482f5a6 schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 Nf47a8c402ada48519a41187c7aa01bc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Animals
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Engineering
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Biomedical Engineering
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1104145 schema:issn 0968-5243
    145 1352-8661
    146 schema:name Magnetic Resonance Materials in Physics, Biology and Medicine
    147 rdf:type schema:Periodical
    148 sg:person.01005306076.43 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
    149 schema:familyName Whitaker
    150 schema:givenName Chastity D. Shaffer
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005306076.43
    152 rdf:type schema:Person
    153 sg:person.01057073775.47 schema:affiliation N6cd5e9a16a2949dfaca99aed704b3614
    154 schema:familyName Wegmann
    155 schema:givenName Michael
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057073775.47
    157 rdf:type schema:Person
    158 sg:person.01227341013.74 schema:affiliation https://www.grid.ac/institutes/grid.10253.35
    159 schema:familyName Heverhagen
    160 schema:givenName Johannes T.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227341013.74
    162 rdf:type schema:Person
    163 sg:person.01371621225.70 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
    164 schema:familyName Matschl
    165 schema:givenName Volker
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371621225.70
    167 rdf:type schema:Person
    168 sg:person.0675412673.89 schema:affiliation N9f6fc985b99e403e992f885d78af3e13
    169 schema:familyName Herz
    170 schema:givenName Udo
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675412673.89
    172 rdf:type schema:Person
    173 sg:person.0732730137.65 schema:affiliation https://www.grid.ac/institutes/grid.10253.35
    174 schema:familyName Alfke
    175 schema:givenName Heiko
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732730137.65
    177 rdf:type schema:Person
    178 sg:person.0764213163.20 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
    179 schema:familyName Hahn
    180 schema:givenName Horst K.
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764213163.20
    182 rdf:type schema:Person
    183 sg:pub.10.1007/bf02678487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005088893
    184 https://doi.org/10.1007/bf02678487
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s00259-001-0683-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018614151
    187 https://doi.org/10.1007/s00259-001-0683-3
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1023/a:1024241905888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005202807
    190 https://doi.org/10.1023/a:1024241905888
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1097/00004647-200205000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040107624
    193 https://doi.org/10.1097/00004647-200205000-00007
    194 rdf:type schema:CreativeWork
    195 https://app.dimensions.ai/details/publication/pub.1083347331 schema:CreativeWork
    196 https://doi.org/10.1002/ijc.10913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026543885
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1002/mrm.10326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029123315
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1002/mrm.1910320215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013616532
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/0361-9230(93)90017-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033455071
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/s0165-0270(00)00172-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018952728
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/s0301-0082(02)00020-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044743669
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/s0344-0338(99)80052-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014162944
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/s0730-725x(97)00273-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037032007
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/s0959-8049(02)00394-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022633040
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/s1352-8661(00)00105-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054696616
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/s1352-8661(01)00147-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054696697
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1038/sj.neo.7900079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006774337
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1093/ilar.42.3.248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034242143
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1097/00002142-200108000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025119996
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1097/00004647-200205000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040107624
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1109/6.625252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061196287
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1117/12.481097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016849603
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1146/annurev.bioeng.1.1.611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044979311
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1152/physiolgenomics.2001.4.3.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074751858
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1359/jbmr.2000.15.12.2451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010688912
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.3109/10976649909088333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070985776
    237 rdf:type schema:CreativeWork
    238 https://www.grid.ac/institutes/grid.10253.35 schema:alternateName Philipp University of Marburg
    239 schema:name Department of Diagnostic Radiology, Philipps University, 35033, Marburg, Germany
    240 rdf:type schema:Organization
    241 https://www.grid.ac/institutes/grid.261331.4 schema:alternateName The Ohio State University
    242 schema:name Department of Radiology, The Ohio State University, 1654 Upham Drive, 647 Means Hall, 43210, Columbus, OH, USA
    243 rdf:type schema:Organization
    244 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
    245 schema:name Department of Clinical Chemistry, Philipps University, 35033, Marburg, Germany
    246 Siemens Medical Solutions, 91052, Erlangen, Germany
    247 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...