Benign /malignant classifier of soft tissue tumors using MR imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-03-01

AUTHORS

Juan M. García-Gómez, César Vidal, Dr. Luis Martí-Bonmatí, Joaquín Galant, Nicolas Sans, Montserrat Robles, Francisco Casacuberta

ABSTRACT

This article presents a pattern-recognition approach to the soft tissue tumors (STT) benign/malignant character diagnosis using magnetic resonance (MR) imaging applied to a large multicenter database. Objective: To develop and test an automatic classifier of STT into benign or malignant by using classical MR imaging findings and epidemiological information. Materials and methods: A database of 430 patients (62% benign and 38% malignant) from several European multicenter registers. There were 61 different histologies (36 with benign and 25 with malignant nature). Three pattern-recognition methods (artificial neural networks, support vector machine, k-nearest neighbor) were applied to learn the discrimination between benignity and malignancy based on a defined MR imaging findings protocol. After the systems had learned by using training samples (with 302 cases), the clinical decision support system was tested in the diagnosis of 128 new STT cases. Results: An 88–92% efficacy was obtained in a not-viewed set of tumors using the pattern-recognition techniques. The best results were obtained with a back-propagation artificial neural network. Conclusion: Benign vs. malignant STT discrimination is accurate by using pattern-recognition methods based on classical MR image findings. This objective tool will assist radiologists in STT grading. More... »

PAGES

194-201

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10334-003-0023-7

DOI

http://dx.doi.org/10.1007/s10334-003-0023-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013860916

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14999563


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Support Systems, Clinical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Europe", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Single-Blind Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soft Tissue Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "BET, Inform\u00e1tica M\u00e9dica, Universidad Polit\u00e9cnica de, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.157927.f", 
          "name": [
            "BET, Inform\u00e1tica M\u00e9dica, Universidad Polit\u00e9cnica de, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-G\u00f3mez", 
        "givenName": "Juan M.", 
        "id": "sg:person.0700660115.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700660115.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BET, Inform\u00e1tica M\u00e9dica, Universidad Polit\u00e9cnica de, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.157927.f", 
          "name": [
            "BET, Inform\u00e1tica M\u00e9dica, Universidad Polit\u00e9cnica de, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vidal", 
        "givenName": "C\u00e9sar", 
        "id": "sg:person.01015106515.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015106515.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Servicio de Radiolog\u00eda, Hospital U. Dr. Peset, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.411289.7", 
          "name": [
            "Resonancia Magn\u00e9tica, Servicio de Radiolog\u00eda, Hospital Universitario Dr. Peset Avda Gaspar Aguilar 90, 46017, Valencia, Spain", 
            "BET, Inform\u00e1tica M\u00e9dica, Universidad Polit\u00e9cnica de, Valencia, Spain", 
            "Servicio de Radiolog\u00eda, Hospital U. Dr. Peset, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ed-Bonmat\u00ed", 
        "givenName": "Dr. Luis", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Servicio de Radiolog\u00eda, Hospital San Juan de Alicante, Spain", 
          "id": "http://www.grid.ac/institutes/grid.411263.3", 
          "name": [
            "Servicio de Radiolog\u00eda, Hospital San Juan de Alicante, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galant", 
        "givenName": "Joaqu\u00edn", 
        "id": "sg:person.01314037546.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314037546.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of RadiologyCHU, Purpan Toulouse, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of RadiologyCHU, Purpan Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sans", 
        "givenName": "Nicolas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BET, Inform\u00e1tica M\u00e9dica, Universidad Polit\u00e9cnica de, Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/grid.157927.f", 
          "name": [
            "BET, Inform\u00e1tica M\u00e9dica, Universidad Polit\u00e9cnica de, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robles", 
        "givenName": "Montserrat", 
        "id": "sg:person.0761366177.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761366177.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ITI-DSICUniversidad Polit\u00e9cnica, de Valencia, Spain", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "ITI-DSICUniversidad Polit\u00e9cnica, de Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casacuberta", 
        "givenName": "Francisco", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-002-1463-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075241404", 
          "https://doi.org/10.1007/s00330-002-1463-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002560050183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031377479", 
          "https://doi.org/10.1007/s002560050183"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-03-01", 
    "datePublishedReg": "2004-03-01", 
    "description": "This article presents a pattern-recognition approach to the soft tissue tumors (STT) benign/malignant character diagnosis using magnetic resonance (MR) imaging applied to a large multicenter database. Objective:\u00a0To develop and test an automatic classifier of STT into benign or malignant by using classical MR imaging findings and epidemiological information. Materials and methods:\u00a0A database of 430 patients (62% benign and 38% malignant) from several European multicenter registers. There were 61 different histologies (36 with benign and 25 with malignant nature). Three pattern-recognition methods (artificial neural networks, support vector machine, k-nearest neighbor) were applied to learn the discrimination between benignity and malignancy based on a defined MR imaging findings protocol. After the systems had learned by using training samples (with 302 cases), the clinical decision support system was tested in the diagnosis of 128 new STT cases. Results:\u00a0An 88\u201392% efficacy was obtained in a not-viewed set of tumors using the pattern-recognition techniques. The best results were obtained with a back-propagation artificial neural network. Conclusion:\u00a0Benign vs. malignant STT discrimination is accurate by using pattern-recognition methods based on classical MR image findings. This objective tool will assist radiologists in STT grading.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10334-003-0023-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1104145", 
        "issn": [
          "0968-5243", 
          "1352-8661"
        ], 
        "name": "Magnetic Resonance Materials in Physics, Biology and Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "pattern-recognition methods", 
      "clinical decision support systems", 
      "back-propagation artificial neural network", 
      "artificial neural network", 
      "decision support system", 
      "pattern-recognition approach", 
      "pattern-recognition techniques", 
      "neural network", 
      "automatic classifier", 
      "training samples", 
      "support system", 
      "classical magnetic resonance", 
      "classifier", 
      "database", 
      "good results", 
      "MR image findings", 
      "network", 
      "character diagnoses", 
      "system", 
      "method", 
      "information", 
      "soft tissue tumors", 
      "set", 
      "protocol", 
      "tool", 
      "multicenter register", 
      "technique", 
      "tissue tumors", 
      "large multicenter database", 
      "magnetic resonance", 
      "radiologists", 
      "set of tumors", 
      "multicenter database", 
      "different histology", 
      "image findings", 
      "epidemiological information", 
      "tumors", 
      "results", 
      "objective tool", 
      "diagnosis", 
      "article", 
      "Benign", 
      "Register", 
      "patients", 
      "malignancy", 
      "findings", 
      "discrimination", 
      "histology", 
      "cases", 
      "efficacy", 
      "grading", 
      "benignity", 
      "samples", 
      "resonance", 
      "materials", 
      "approach", 
      "malignant character diagnosis", 
      "European multicenter registers", 
      "findings protocol", 
      "new STT cases", 
      "STT cases", 
      "malignant STT discrimination", 
      "STT discrimination", 
      "classical MR image findings", 
      "STT grading"
    ], 
    "name": "Benign /malignant classifier of soft tissue tumors using MR imaging", 
    "pagination": "194-201", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013860916"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10334-003-0023-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14999563"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10334-003-0023-7", 
      "https://app.dimensions.ai/details/publication/pub.1013860916"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_389.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10334-003-0023-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10334-003-0023-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10334-003-0023-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10334-003-0023-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10334-003-0023-7'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      22 PREDICATES      105 URIs      95 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10334-003-0023-7 schema:about N0070765daf6347b4aeb837d35cfd49d3
2 N12b838d58d734d618d292f3593fc7949
3 N15a639f9c02f44a38eb9d703a5012e13
4 N34900cf1dd6c42a382ac7b47b23c9843
5 N40d292cc10134ebba9c2c6e05b641163
6 N559bb3e842814134a38d3c8d46f6dac2
7 N66b22505243645ff9050b5511caf3878
8 N7c28e82cc30e427fac3f8ff774b8f808
9 N8c356000dd3b468980f395008074727f
10 Nbf602f70c27344a59115fc1b0db93e81
11 Nef983542891c4850a6c5abfd8dab2233
12 Nf2194d3319de4c82b1739ff54a564d64
13 Nfa179376d5be4e00a3d77a5dc6c87631
14 anzsrc-for:08
15 anzsrc-for:0801
16 schema:author N29cac257e2fc492fb5204a2d0eb90ab4
17 schema:citation sg:pub.10.1007/s002560050183
18 sg:pub.10.1007/s00330-002-1463-6
19 schema:datePublished 2004-03-01
20 schema:datePublishedReg 2004-03-01
21 schema:description This article presents a pattern-recognition approach to the soft tissue tumors (STT) benign/malignant character diagnosis using magnetic resonance (MR) imaging applied to a large multicenter database. Objective: To develop and test an automatic classifier of STT into benign or malignant by using classical MR imaging findings and epidemiological information. Materials and methods: A database of 430 patients (62% benign and 38% malignant) from several European multicenter registers. There were 61 different histologies (36 with benign and 25 with malignant nature). Three pattern-recognition methods (artificial neural networks, support vector machine, k-nearest neighbor) were applied to learn the discrimination between benignity and malignancy based on a defined MR imaging findings protocol. After the systems had learned by using training samples (with 302 cases), the clinical decision support system was tested in the diagnosis of 128 new STT cases. Results: An 88–92% efficacy was obtained in a not-viewed set of tumors using the pattern-recognition techniques. The best results were obtained with a back-propagation artificial neural network. Conclusion: Benign vs. malignant STT discrimination is accurate by using pattern-recognition methods based on classical MR image findings. This objective tool will assist radiologists in STT grading.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N36f314d02c6a49938dab1c30f617e51d
26 Na3476a9c03da4271b7eb90dcd21e7dd9
27 sg:journal.1104145
28 schema:keywords Benign
29 European multicenter registers
30 MR image findings
31 Register
32 STT cases
33 STT discrimination
34 STT grading
35 approach
36 article
37 artificial neural network
38 automatic classifier
39 back-propagation artificial neural network
40 benignity
41 cases
42 character diagnoses
43 classical MR image findings
44 classical magnetic resonance
45 classifier
46 clinical decision support systems
47 database
48 decision support system
49 diagnosis
50 different histology
51 discrimination
52 efficacy
53 epidemiological information
54 findings
55 findings protocol
56 good results
57 grading
58 histology
59 image findings
60 information
61 large multicenter database
62 magnetic resonance
63 malignancy
64 malignant STT discrimination
65 malignant character diagnosis
66 materials
67 method
68 multicenter database
69 multicenter register
70 network
71 neural network
72 new STT cases
73 objective tool
74 patients
75 pattern-recognition approach
76 pattern-recognition methods
77 pattern-recognition techniques
78 protocol
79 radiologists
80 resonance
81 results
82 samples
83 set
84 set of tumors
85 soft tissue tumors
86 support system
87 system
88 technique
89 tissue tumors
90 tool
91 training samples
92 tumors
93 schema:name Benign /malignant classifier of soft tissue tumors using MR imaging
94 schema:pagination 194-201
95 schema:productId N202d942101d1411786b951a1bd510d9d
96 N6472388655124c82accb6ed7825e2d75
97 N90caac9277ea431183b148c3ae081af0
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013860916
99 https://doi.org/10.1007/s10334-003-0023-7
100 schema:sdDatePublished 2021-11-01T18:07
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher Ne5b885b4a5904271946d8ec6db753909
103 schema:url https://doi.org/10.1007/s10334-003-0023-7
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N0070765daf6347b4aeb837d35cfd49d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Cluster Analysis
109 rdf:type schema:DefinedTerm
110 N0912b43a4f30453897b20cc49e69a02f rdf:first Nf4a5fb0cfef44615ba8d0cacc75f8ed7
111 rdf:rest N29f087cf18a4487f88e4bf1ae2b43c4b
112 N12b838d58d734d618d292f3593fc7949 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Single-Blind Method
114 rdf:type schema:DefinedTerm
115 N15a639f9c02f44a38eb9d703a5012e13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Europe
117 rdf:type schema:DefinedTerm
118 N1c23f0eb8480421ba4f792fad52f11f1 rdf:first N9749fea33c4944418c26a00a4df3f184
119 rdf:rest N2f9cfa5fa8ea4d1e8765a3921c157c5d
120 N202d942101d1411786b951a1bd510d9d schema:name pubmed_id
121 schema:value 14999563
122 rdf:type schema:PropertyValue
123 N29cac257e2fc492fb5204a2d0eb90ab4 rdf:first sg:person.0700660115.44
124 rdf:rest N2a2ff451a1eb47b3883fbae43480a9b1
125 N29f087cf18a4487f88e4bf1ae2b43c4b rdf:first sg:person.0761366177.43
126 rdf:rest N5b33c29c7bc943a8875454ad49dfe9df
127 N2a2ff451a1eb47b3883fbae43480a9b1 rdf:first sg:person.01015106515.09
128 rdf:rest N1c23f0eb8480421ba4f792fad52f11f1
129 N2f9cfa5fa8ea4d1e8765a3921c157c5d rdf:first sg:person.01314037546.44
130 rdf:rest N0912b43a4f30453897b20cc49e69a02f
131 N34900cf1dd6c42a382ac7b47b23c9843 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Sensitivity and Specificity
133 rdf:type schema:DefinedTerm
134 N36f314d02c6a49938dab1c30f617e51d schema:volumeNumber 16
135 rdf:type schema:PublicationVolume
136 N40d292cc10134ebba9c2c6e05b641163 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Magnetic Resonance Imaging
138 rdf:type schema:DefinedTerm
139 N559bb3e842814134a38d3c8d46f6dac2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Decision Support Systems, Clinical
141 rdf:type schema:DefinedTerm
142 N5b33c29c7bc943a8875454ad49dfe9df rdf:first N73fab3014a39468e92217470875e3fb7
143 rdf:rest rdf:nil
144 N6472388655124c82accb6ed7825e2d75 schema:name doi
145 schema:value 10.1007/s10334-003-0023-7
146 rdf:type schema:PropertyValue
147 N66b22505243645ff9050b5511caf3878 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Reproducibility of Results
149 rdf:type schema:DefinedTerm
150 N73fab3014a39468e92217470875e3fb7 schema:affiliation grid-institutes:None
151 schema:familyName Casacuberta
152 schema:givenName Francisco
153 rdf:type schema:Person
154 N7c28e82cc30e427fac3f8ff774b8f808 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Soft Tissue Neoplasms
156 rdf:type schema:DefinedTerm
157 N8c356000dd3b468980f395008074727f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Image Interpretation, Computer-Assisted
159 rdf:type schema:DefinedTerm
160 N90caac9277ea431183b148c3ae081af0 schema:name dimensions_id
161 schema:value pub.1013860916
162 rdf:type schema:PropertyValue
163 N9749fea33c4944418c26a00a4df3f184 schema:affiliation grid-institutes:grid.411289.7
164 schema:familyName Martí-Bonmatí
165 schema:givenName Dr. Luis
166 rdf:type schema:Person
167 Na3476a9c03da4271b7eb90dcd21e7dd9 schema:issueNumber 4
168 rdf:type schema:PublicationIssue
169 Nbf602f70c27344a59115fc1b0db93e81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Artificial Intelligence
171 rdf:type schema:DefinedTerm
172 Ne5b885b4a5904271946d8ec6db753909 schema:name Springer Nature - SN SciGraph project
173 rdf:type schema:Organization
174 Nef983542891c4850a6c5abfd8dab2233 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Algorithms
176 rdf:type schema:DefinedTerm
177 Nf2194d3319de4c82b1739ff54a564d64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Humans
179 rdf:type schema:DefinedTerm
180 Nf4a5fb0cfef44615ba8d0cacc75f8ed7 schema:affiliation grid-institutes:None
181 schema:familyName Sans
182 schema:givenName Nicolas
183 rdf:type schema:Person
184 Nfa179376d5be4e00a3d77a5dc6c87631 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Pattern Recognition, Automated
186 rdf:type schema:DefinedTerm
187 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
188 schema:name Information and Computing Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
191 schema:name Artificial Intelligence and Image Processing
192 rdf:type schema:DefinedTerm
193 sg:journal.1104145 schema:issn 0968-5243
194 1352-8661
195 schema:name Magnetic Resonance Materials in Physics, Biology and Medicine
196 schema:publisher Springer Nature
197 rdf:type schema:Periodical
198 sg:person.01015106515.09 schema:affiliation grid-institutes:grid.157927.f
199 schema:familyName Vidal
200 schema:givenName César
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015106515.09
202 rdf:type schema:Person
203 sg:person.01314037546.44 schema:affiliation grid-institutes:grid.411263.3
204 schema:familyName Galant
205 schema:givenName Joaquín
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314037546.44
207 rdf:type schema:Person
208 sg:person.0700660115.44 schema:affiliation grid-institutes:grid.157927.f
209 schema:familyName García-Gómez
210 schema:givenName Juan M.
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700660115.44
212 rdf:type schema:Person
213 sg:person.0761366177.43 schema:affiliation grid-institutes:grid.157927.f
214 schema:familyName Robles
215 schema:givenName Montserrat
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761366177.43
217 rdf:type schema:Person
218 sg:pub.10.1007/s002560050183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031377479
219 https://doi.org/10.1007/s002560050183
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s00330-002-1463-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075241404
222 https://doi.org/10.1007/s00330-002-1463-6
223 rdf:type schema:CreativeWork
224 grid-institutes:None schema:alternateName Department of RadiologyCHU, Purpan Toulouse, France
225 ITI-DSICUniversidad Politécnica, de Valencia, Spain
226 schema:name Department of RadiologyCHU, Purpan Toulouse, France
227 ITI-DSICUniversidad Politécnica, de Valencia, Spain
228 rdf:type schema:Organization
229 grid-institutes:grid.157927.f schema:alternateName BET, Informática Médica, Universidad Politécnica de, Valencia, Spain
230 schema:name BET, Informática Médica, Universidad Politécnica de, Valencia, Spain
231 rdf:type schema:Organization
232 grid-institutes:grid.411263.3 schema:alternateName Servicio de Radiología, Hospital San Juan de Alicante, Spain
233 schema:name Servicio de Radiología, Hospital San Juan de Alicante, Spain
234 rdf:type schema:Organization
235 grid-institutes:grid.411289.7 schema:alternateName Servicio de Radiología, Hospital U. Dr. Peset, Valencia, Spain
236 schema:name BET, Informática Médica, Universidad Politécnica de, Valencia, Spain
237 Resonancia Magnética, Servicio de Radiología, Hospital Universitario Dr. Peset Avda Gaspar Aguilar 90, 46017, Valencia, Spain
238 Servicio de Radiología, Hospital U. Dr. Peset, Valencia, Spain
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...