National-scale variations in the stable isotopic compositions of irrigation-pond and spring waters across Japan View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-30

AUTHORS

Takeo Tsuchihara, Katsushi Shirahata, Shuhei Yoshimoto, Satoshi Ishida

ABSTRACT

The national-scale variations and regional characteristics of the stable isotopic compositions of irrigation ponds, which are small reservoirs for irrigating paddy rice fields and play an important role in supporting rice production in Japan, and spring waters were investigated during irrigation periods for paddy rice. The isotopic compositions of spring waters are mainly affected by geographical factors (latitude and altitude) and meteorological factors (annual precipitation and ratio of winter precipitation to annual precipitation). In particular, the ratio of winter precipitation characterizes the spatial variations of the isotopic compositions on different ocean sides of the archipelago. The isotopic compositions of irrigation-pond waters are affected by meteorological factors (air temperature, ratio of winter precipitation to annual precipitation and wind speed) and geometrical feature (water depth). The isotopic compositions of irrigation-pond waters with relatively short residence times show seasonal variations, reflecting seasonal differences in isotopic compositions of precipitation, whereas spring waters show temporally invariant isotopic compositions. In addition to the regional differences of this seasonal isotopic variation, irrigation-pond waters were affected by evaporative isotopic enrichment. These two elements influence the isotopic compositions of irrigation-pond waters across Japan, resulting in different values from spring waters. More... »

PAGES

1-10

Journal

TITLE

Paddy and Water Environment

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10333-019-00738-x

DOI

http://dx.doi.org/10.1007/s10333-019-00738-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113143979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Rural Engineering", 
          "id": "https://www.grid.ac/institutes/grid.482722.9", 
          "name": [
            "Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, 305-8609, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuchihara", 
        "givenName": "Takeo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Rural Engineering", 
          "id": "https://www.grid.ac/institutes/grid.482722.9", 
          "name": [
            "Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, 305-8609, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shirahata", 
        "givenName": "Katsushi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Rural Engineering", 
          "id": "https://www.grid.ac/institutes/grid.482722.9", 
          "name": [
            "Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, 305-8609, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshimoto", 
        "givenName": "Shuhei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Rural Engineering", 
          "id": "https://www.grid.ac/institutes/grid.482722.9", 
          "name": [
            "Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, 305-8609, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishida", 
        "givenName": "Satoshi", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5194/hess-19-1577-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003311517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2005.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006516141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2015.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008605128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2015.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008605128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2015.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008605128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(93)90080-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009859459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(93)90080-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009859459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3178/jjshwr.16.556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010275896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.10640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020169876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014wr015687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024965837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(02)00022-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031063566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3178/jjshwr.22.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031647732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-15-267-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031911648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.2014.59.6.2150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032396350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2014.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032955134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5026/jgeography.122.666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040790710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10256016.2015.1132215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046584708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2343/geochemj.28.387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051560417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1967.10482916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2475/ajs.301.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070842347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3402/tellusa.v16i4.8993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071277936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2018jd028470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105319710"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-30", 
    "datePublishedReg": "2019-03-30", 
    "description": "The national-scale variations and regional characteristics of the stable isotopic compositions of irrigation ponds, which are small reservoirs for irrigating paddy rice fields and play an important role in supporting rice production in Japan, and spring waters were investigated during irrigation periods for paddy rice. The isotopic compositions of spring waters are mainly affected by geographical factors (latitude and altitude) and meteorological factors (annual precipitation and ratio of winter precipitation to annual precipitation). In particular, the ratio of winter precipitation characterizes the spatial variations of the isotopic compositions on different ocean sides of the archipelago. The isotopic compositions of irrigation-pond waters are affected by meteorological factors (air temperature, ratio of winter precipitation to annual precipitation and wind speed) and geometrical feature (water depth). The isotopic compositions of irrigation-pond waters with relatively short residence times show seasonal variations, reflecting seasonal differences in isotopic compositions of precipitation, whereas spring waters show temporally invariant isotopic compositions. In addition to the regional differences of this seasonal isotopic variation, irrigation-pond waters were affected by evaporative isotopic enrichment. These two elements influence the isotopic compositions of irrigation-pond waters across Japan, resulting in different values from spring waters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10333-019-00738-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136557", 
        "issn": [
          "1611-2490", 
          "1611-2504"
        ], 
        "name": "Paddy and Water Environment", 
        "type": "Periodical"
      }
    ], 
    "name": "National-scale variations in the stable isotopic compositions of irrigation-pond and spring waters across Japan", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "90d6859d068e0e7f48931043117446897993013338b0cc555b68c79c29456146"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10333-019-00738-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113143979"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10333-019-00738-x", 
      "https://app.dimensions.ai/details/publication/pub.1113143979"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10333-019-00738-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10333-019-00738-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10333-019-00738-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10333-019-00738-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10333-019-00738-x'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      43 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10333-019-00738-x schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N6036f8b83c1f42b2985decf443f055f1
4 schema:citation https://doi.org/10.1002/2014wr015687
5 https://doi.org/10.1002/hyp.10640
6 https://doi.org/10.1016/0022-1694(93)90080-s
7 https://doi.org/10.1016/j.jhydrol.2005.09.018
8 https://doi.org/10.1016/j.jhydrol.2014.12.017
9 https://doi.org/10.1016/j.jhydrol.2015.02.008
10 https://doi.org/10.1016/s0022-1694(02)00022-7
11 https://doi.org/10.1029/2018jd028470
12 https://doi.org/10.1080/01621459.1967.10482916
13 https://doi.org/10.1080/10256016.2015.1132215
14 https://doi.org/10.2343/geochemj.28.387
15 https://doi.org/10.2475/ajs.301.1.1
16 https://doi.org/10.3178/jjshwr.16.556
17 https://doi.org/10.3178/jjshwr.22.262
18 https://doi.org/10.3402/tellusa.v16i4.8993
19 https://doi.org/10.4319/lo.2014.59.6.2150
20 https://doi.org/10.5026/jgeography.122.666
21 https://doi.org/10.5194/hess-15-267-2011
22 https://doi.org/10.5194/hess-19-1577-2015
23 schema:datePublished 2019-03-30
24 schema:datePublishedReg 2019-03-30
25 schema:description The national-scale variations and regional characteristics of the stable isotopic compositions of irrigation ponds, which are small reservoirs for irrigating paddy rice fields and play an important role in supporting rice production in Japan, and spring waters were investigated during irrigation periods for paddy rice. The isotopic compositions of spring waters are mainly affected by geographical factors (latitude and altitude) and meteorological factors (annual precipitation and ratio of winter precipitation to annual precipitation). In particular, the ratio of winter precipitation characterizes the spatial variations of the isotopic compositions on different ocean sides of the archipelago. The isotopic compositions of irrigation-pond waters are affected by meteorological factors (air temperature, ratio of winter precipitation to annual precipitation and wind speed) and geometrical feature (water depth). The isotopic compositions of irrigation-pond waters with relatively short residence times show seasonal variations, reflecting seasonal differences in isotopic compositions of precipitation, whereas spring waters show temporally invariant isotopic compositions. In addition to the regional differences of this seasonal isotopic variation, irrigation-pond waters were affected by evaporative isotopic enrichment. These two elements influence the isotopic compositions of irrigation-pond waters across Japan, resulting in different values from spring waters.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf sg:journal.1136557
30 schema:name National-scale variations in the stable isotopic compositions of irrigation-pond and spring waters across Japan
31 schema:pagination 1-10
32 schema:productId N82a2669deedf4a2b9c160a09bb8f5e56
33 Nd2b87c87de5c4d6fb22b2731a83f615a
34 Ndaf75c25ba384b7cbe3a875cbba98221
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113143979
36 https://doi.org/10.1007/s10333-019-00738-x
37 schema:sdDatePublished 2019-04-11T13:33
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N1c48594826bb415ca422df03cf6e0e5c
40 schema:url https://link.springer.com/10.1007%2Fs10333-019-00738-x
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N1c48594826bb415ca422df03cf6e0e5c schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N2b0a6f883e7c40488bca8a88b5a28ce5 schema:affiliation https://www.grid.ac/institutes/grid.482722.9
47 schema:familyName Yoshimoto
48 schema:givenName Shuhei
49 rdf:type schema:Person
50 N3686e73f5ff84b2eac8b82f4f4c78a9f rdf:first Ndb33570398bf4215913a94ec80fa570d
51 rdf:rest Nd49758822923470386402d574b2f341c
52 N4ef23a89b7a44aee9ef4867c8c243aeb schema:affiliation https://www.grid.ac/institutes/grid.482722.9
53 schema:familyName Ishida
54 schema:givenName Satoshi
55 rdf:type schema:Person
56 N6036f8b83c1f42b2985decf443f055f1 rdf:first Na1f9658ee8414cf9a4ecef813a4ba1df
57 rdf:rest N3686e73f5ff84b2eac8b82f4f4c78a9f
58 N82a2669deedf4a2b9c160a09bb8f5e56 schema:name doi
59 schema:value 10.1007/s10333-019-00738-x
60 rdf:type schema:PropertyValue
61 N9b6855af7d9c43f1a758adeda625e8f1 rdf:first N4ef23a89b7a44aee9ef4867c8c243aeb
62 rdf:rest rdf:nil
63 Na1f9658ee8414cf9a4ecef813a4ba1df schema:affiliation https://www.grid.ac/institutes/grid.482722.9
64 schema:familyName Tsuchihara
65 schema:givenName Takeo
66 rdf:type schema:Person
67 Nd2b87c87de5c4d6fb22b2731a83f615a schema:name dimensions_id
68 schema:value pub.1113143979
69 rdf:type schema:PropertyValue
70 Nd49758822923470386402d574b2f341c rdf:first N2b0a6f883e7c40488bca8a88b5a28ce5
71 rdf:rest N9b6855af7d9c43f1a758adeda625e8f1
72 Ndaf75c25ba384b7cbe3a875cbba98221 schema:name readcube_id
73 schema:value 90d6859d068e0e7f48931043117446897993013338b0cc555b68c79c29456146
74 rdf:type schema:PropertyValue
75 Ndb33570398bf4215913a94ec80fa570d schema:affiliation https://www.grid.ac/institutes/grid.482722.9
76 schema:familyName Shirahata
77 schema:givenName Katsushi
78 rdf:type schema:Person
79 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
80 schema:name Earth Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
83 schema:name Oceanography
84 rdf:type schema:DefinedTerm
85 sg:journal.1136557 schema:issn 1611-2490
86 1611-2504
87 schema:name Paddy and Water Environment
88 rdf:type schema:Periodical
89 https://doi.org/10.1002/2014wr015687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024965837
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/hyp.10640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020169876
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0022-1694(93)90080-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1009859459
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jhydrol.2005.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006516141
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.jhydrol.2014.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032955134
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.jhydrol.2015.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008605128
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0022-1694(02)00022-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031063566
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1029/2018jd028470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105319710
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1080/01621459.1967.10482916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300155
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1080/10256016.2015.1132215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046584708
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2343/geochemj.28.387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051560417
110 rdf:type schema:CreativeWork
111 https://doi.org/10.2475/ajs.301.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070842347
112 rdf:type schema:CreativeWork
113 https://doi.org/10.3178/jjshwr.16.556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010275896
114 rdf:type schema:CreativeWork
115 https://doi.org/10.3178/jjshwr.22.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031647732
116 rdf:type schema:CreativeWork
117 https://doi.org/10.3402/tellusa.v16i4.8993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071277936
118 rdf:type schema:CreativeWork
119 https://doi.org/10.4319/lo.2014.59.6.2150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032396350
120 rdf:type schema:CreativeWork
121 https://doi.org/10.5026/jgeography.122.666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040790710
122 rdf:type schema:CreativeWork
123 https://doi.org/10.5194/hess-15-267-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031911648
124 rdf:type schema:CreativeWork
125 https://doi.org/10.5194/hess-19-1577-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003311517
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.482722.9 schema:alternateName Institute for Rural Engineering
128 schema:name Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, 305-8609, Tsukuba, Ibaraki, Japan
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...