Clinical implications and prognostic value of five biomarkers in endometrial carcinoma View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12-19

AUTHORS

Mingzhu Li, Lijun Zhao, Wenjuan Qi, Danhua Shen, Xiaoping Li, Jianliu Wang, Lihui Wei

ABSTRACT

ObjectiveThe aim was to identify the relationship between ER, PR, P53, Ki-67, PTEN, the association with clinicopathological parameters and the correlation with survival.MethodsWe studied 190 cases of primary endometrial carcinoma in which ER, PR, Ki-67, P53, PTEN antigens were investigated with the use of immunohistochemical methods. To evaluate the correlations among immunohistochemical staining and the age, menopause status, histological type, FIGO stage, grading, depth of invasion, lymph nodes involvement and serum tumor marker. Survival analysis was assessed within single and combined biomarkers types.ResultsThe percentage of Ki-67 and P53 positive endometrial tumors was significantly higher in ER negative vs ER positive tumors (both P = 0.000). The same trend was evident in PR positive and negative group. The percentage of PTEN positive tumors was significantly higher in PR positive versus PR negative tumors (P = 0.021) but was no difference in different ER status. ER and PR status were significant predictors with FIGO staging, grading and recurrence. There was no clear association between PTEN positivity and clinicopathological parameters except more relevance with endometrioid histotype (P = 0.013). Positive Ki-67 or P53 was found to be strictly related to more aggressive features. There was statistically significant difference in different status of P53 and Ki-67 in survival time.ConclusionER and PR positive tumors showed a statistically significant association with better clinical outcome, PR has more significant influence on prognosis. The percentage of positive Ki-67 or P53 was significantly higher in hormone-independent group versus in hormone-dependent group and combined Ki-67 and P53 may have more effect on prognosis in former group. More... »

PAGES

586-591

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10330-013-1229-4

DOI

http://dx.doi.org/10.1007/s10330-013-1229-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005231948


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411634.5", 
          "name": [
            "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Mingzhu", 
        "id": "sg:person.01115076104.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115076104.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411634.5", 
          "name": [
            "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Lijun", 
        "id": "sg:person.01043533137.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043533137.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411634.5", 
          "name": [
            "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Wenjuan", 
        "id": "sg:person.0611456002.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611456002.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411634.5", 
          "name": [
            "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Danhua", 
        "id": "sg:person.0642462513.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642462513.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411634.5", 
          "name": [
            "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaoping", 
        "id": "sg:person.01277437704.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277437704.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411634.5", 
          "name": [
            "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianliu", 
        "id": "sg:person.01276052043.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276052043.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411634.5", 
          "name": [
            "Center of Gynecologic Oncology, Peking University People\u2019s Hospital, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Lihui", 
        "id": "sg:person.01312311264.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312311264.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/bjc.2012.219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011884577", 
          "https://doi.org/10.1038/bjc.2012.219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004280000361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044503314", 
          "https://doi.org/10.1007/s004280000361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/modpathol.3800718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050507625", 
          "https://doi.org/10.1038/modpathol.3800718"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12-19", 
    "datePublishedReg": "2013-12-19", 
    "description": "ObjectiveThe aim was to identify the relationship between ER, PR, P53, Ki-67, PTEN, the association with clinicopathological parameters and the correlation with survival.MethodsWe studied 190 cases of primary endometrial carcinoma in which ER, PR, Ki-67, P53, PTEN antigens were investigated with the use of immunohistochemical methods. To evaluate the correlations among immunohistochemical staining and the age, menopause status, histological type, FIGO stage, grading, depth of invasion, lymph nodes involvement and serum tumor marker. Survival analysis was assessed within single and combined biomarkers types.ResultsThe percentage of Ki-67 and P53 positive endometrial tumors was significantly higher in ER negative vs ER positive tumors (both P = 0.000). The same trend was evident in PR positive and negative group. The percentage of PTEN positive tumors was significantly higher in PR positive versus PR negative tumors (P = 0.021) but was no difference in different ER status. ER and PR status were significant predictors with FIGO staging, grading and recurrence. There was no clear association between PTEN positivity and clinicopathological parameters except more relevance with endometrioid histotype (P = 0.013). Positive Ki-67 or P53 was found to be strictly related to more aggressive features. There was statistically significant difference in different status of P53 and Ki-67 in survival time.ConclusionER and PR positive tumors showed a statistically significant association with better clinical outcome, PR has more significant influence on prognosis. The percentage of positive Ki-67 or P53 was significantly higher in hormone-independent group versus in hormone-dependent group and combined Ki-67 and P53 may have more effect on prognosis in former group.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10330-013-1229-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1032171", 
        "issn": [
          "2095-9621", 
          "1613-9089"
        ], 
        "name": "The Chinese-German Journal of Clinical Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "positive tumors", 
      "endometrial carcinoma", 
      "positive Ki-67", 
      "clinicopathological parameters", 
      "hormone-dependent group", 
      "PR negative tumors", 
      "PR positive tumors", 
      "lymph node involvement", 
      "ER positive tumors", 
      "serum tumor markers", 
      "better clinical outcomes", 
      "primary endometrial carcinoma", 
      "different ER status", 
      "depth of invasion", 
      "percentage of Ki-67", 
      "endometrioid histotype", 
      "FIGO staging", 
      "node involvement", 
      "FIGO stage", 
      "menopause status", 
      "PR status", 
      "aggressive features", 
      "clinical outcomes", 
      "histological type", 
      "ER status", 
      "prognostic value", 
      "endometrial tumors", 
      "negative tumors", 
      "PTEN positivity", 
      "tumor markers", 
      "survival time", 
      "immunohistochemical staining", 
      "ObjectiveThe aim", 
      "negative group", 
      "immunohistochemical methods", 
      "survival analysis", 
      "significant association", 
      "clinical implications", 
      "Ki-67", 
      "tumors", 
      "clear association", 
      "former group", 
      "significant predictors", 
      "biomarker types", 
      "significant differences", 
      "prognosis", 
      "carcinoma", 
      "p53", 
      "association", 
      "status", 
      "group", 
      "grading", 
      "percentage", 
      "recurrence", 
      "histotype", 
      "MethodsWe", 
      "staging", 
      "ER", 
      "antigen", 
      "positivity", 
      "biomarkers", 
      "survival", 
      "outcomes", 
      "age", 
      "staining", 
      "differences", 
      "predictors", 
      "invasion", 
      "markers", 
      "involvement", 
      "PTEN", 
      "correlation", 
      "PR", 
      "aim", 
      "more effect", 
      "more relevance", 
      "cases", 
      "types", 
      "relevance", 
      "effect", 
      "different status", 
      "same trend", 
      "use", 
      "stage", 
      "significant influence", 
      "relationship", 
      "time", 
      "features", 
      "trends", 
      "implications", 
      "analysis", 
      "parameters", 
      "values", 
      "influence", 
      "method", 
      "depth", 
      "PTEN antigens", 
      "combined biomarkers types", 
      "P53 positive endometrial tumors", 
      "positive endometrial tumors", 
      "PTEN positive tumors", 
      "ConclusionER", 
      "hormone-independent group"
    ], 
    "name": "Clinical implications and prognostic value of five biomarkers in endometrial carcinoma", 
    "pagination": "586-591", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005231948"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10330-013-1229-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10330-013-1229-4", 
      "https://app.dimensions.ai/details/publication/pub.1005231948"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_588.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10330-013-1229-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10330-013-1229-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10330-013-1229-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10330-013-1229-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10330-013-1229-4'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      22 PREDICATES      131 URIs      120 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10330-013-1229-4 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Ndc1e279e97f94392b91689fc97f75a3e
4 schema:citation sg:pub.10.1007/s004280000361
5 sg:pub.10.1038/bjc.2012.219
6 sg:pub.10.1038/modpathol.3800718
7 schema:datePublished 2013-12-19
8 schema:datePublishedReg 2013-12-19
9 schema:description ObjectiveThe aim was to identify the relationship between ER, PR, P53, Ki-67, PTEN, the association with clinicopathological parameters and the correlation with survival.MethodsWe studied 190 cases of primary endometrial carcinoma in which ER, PR, Ki-67, P53, PTEN antigens were investigated with the use of immunohistochemical methods. To evaluate the correlations among immunohistochemical staining and the age, menopause status, histological type, FIGO stage, grading, depth of invasion, lymph nodes involvement and serum tumor marker. Survival analysis was assessed within single and combined biomarkers types.ResultsThe percentage of Ki-67 and P53 positive endometrial tumors was significantly higher in ER negative vs ER positive tumors (both P = 0.000). The same trend was evident in PR positive and negative group. The percentage of PTEN positive tumors was significantly higher in PR positive versus PR negative tumors (P = 0.021) but was no difference in different ER status. ER and PR status were significant predictors with FIGO staging, grading and recurrence. There was no clear association between PTEN positivity and clinicopathological parameters except more relevance with endometrioid histotype (P = 0.013). Positive Ki-67 or P53 was found to be strictly related to more aggressive features. There was statistically significant difference in different status of P53 and Ki-67 in survival time.ConclusionER and PR positive tumors showed a statistically significant association with better clinical outcome, PR has more significant influence on prognosis. The percentage of positive Ki-67 or P53 was significantly higher in hormone-independent group versus in hormone-dependent group and combined Ki-67 and P53 may have more effect on prognosis in former group.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N71df1793c0b24b5faaa01d1990d902b0
14 Nb26d44f045124a17b747000566752c25
15 sg:journal.1032171
16 schema:keywords ConclusionER
17 ER
18 ER positive tumors
19 ER status
20 FIGO stage
21 FIGO staging
22 Ki-67
23 MethodsWe
24 ObjectiveThe aim
25 P53 positive endometrial tumors
26 PR
27 PR negative tumors
28 PR positive tumors
29 PR status
30 PTEN
31 PTEN antigens
32 PTEN positive tumors
33 PTEN positivity
34 age
35 aggressive features
36 aim
37 analysis
38 antigen
39 association
40 better clinical outcomes
41 biomarker types
42 biomarkers
43 carcinoma
44 cases
45 clear association
46 clinical implications
47 clinical outcomes
48 clinicopathological parameters
49 combined biomarkers types
50 correlation
51 depth
52 depth of invasion
53 differences
54 different ER status
55 different status
56 effect
57 endometrial carcinoma
58 endometrial tumors
59 endometrioid histotype
60 features
61 former group
62 grading
63 group
64 histological type
65 histotype
66 hormone-dependent group
67 hormone-independent group
68 immunohistochemical methods
69 immunohistochemical staining
70 implications
71 influence
72 invasion
73 involvement
74 lymph node involvement
75 markers
76 menopause status
77 method
78 more effect
79 more relevance
80 negative group
81 negative tumors
82 node involvement
83 outcomes
84 p53
85 parameters
86 percentage
87 percentage of Ki-67
88 positive Ki-67
89 positive endometrial tumors
90 positive tumors
91 positivity
92 predictors
93 primary endometrial carcinoma
94 prognosis
95 prognostic value
96 recurrence
97 relationship
98 relevance
99 same trend
100 serum tumor markers
101 significant association
102 significant differences
103 significant influence
104 significant predictors
105 stage
106 staging
107 staining
108 status
109 survival
110 survival analysis
111 survival time
112 time
113 trends
114 tumor markers
115 tumors
116 types
117 use
118 values
119 schema:name Clinical implications and prognostic value of five biomarkers in endometrial carcinoma
120 schema:pagination 586-591
121 schema:productId Nbcf231d7ce4a42a7bd8d68db1bdde674
122 Nfc6fe9746d07427497eea5ece6bc473a
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005231948
124 https://doi.org/10.1007/s10330-013-1229-4
125 schema:sdDatePublished 2022-01-01T18:28
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher Ncfc76df4fb3948be8706c890d8d72a07
128 schema:url https://doi.org/10.1007/s10330-013-1229-4
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N4bfd1ec1a91c434f840c49cecb082c0c rdf:first sg:person.01043533137.46
133 rdf:rest Ndc18e5de56f24bffb8d07800c5fd895e
134 N4daa8a9b91534d26a9b8588a2a97b161 rdf:first sg:person.01277437704.55
135 rdf:rest Ne8cb5ffb7cdd483f8d86d2e19bd7cfe1
136 N67f2d32ced79484aaa77ba66e823c54f rdf:first sg:person.0642462513.43
137 rdf:rest N4daa8a9b91534d26a9b8588a2a97b161
138 N71df1793c0b24b5faaa01d1990d902b0 schema:issueNumber 12
139 rdf:type schema:PublicationIssue
140 N957b80b8c2b542a798bce7a6e792dfde rdf:first sg:person.01312311264.11
141 rdf:rest rdf:nil
142 Nb26d44f045124a17b747000566752c25 schema:volumeNumber 12
143 rdf:type schema:PublicationVolume
144 Nbcf231d7ce4a42a7bd8d68db1bdde674 schema:name doi
145 schema:value 10.1007/s10330-013-1229-4
146 rdf:type schema:PropertyValue
147 Ncfc76df4fb3948be8706c890d8d72a07 schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Ndc18e5de56f24bffb8d07800c5fd895e rdf:first sg:person.0611456002.06
150 rdf:rest N67f2d32ced79484aaa77ba66e823c54f
151 Ndc1e279e97f94392b91689fc97f75a3e rdf:first sg:person.01115076104.34
152 rdf:rest N4bfd1ec1a91c434f840c49cecb082c0c
153 Ne8cb5ffb7cdd483f8d86d2e19bd7cfe1 rdf:first sg:person.01276052043.02
154 rdf:rest N957b80b8c2b542a798bce7a6e792dfde
155 Nfc6fe9746d07427497eea5ece6bc473a schema:name dimensions_id
156 schema:value pub.1005231948
157 rdf:type schema:PropertyValue
158 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
159 schema:name Medical and Health Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
162 schema:name Oncology and Carcinogenesis
163 rdf:type schema:DefinedTerm
164 sg:journal.1032171 schema:issn 1613-9089
165 2095-9621
166 schema:name The Chinese-German Journal of Clinical Oncology
167 schema:publisher Springer Nature
168 rdf:type schema:Periodical
169 sg:person.01043533137.46 schema:affiliation grid-institutes:grid.411634.5
170 schema:familyName Zhao
171 schema:givenName Lijun
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043533137.46
173 rdf:type schema:Person
174 sg:person.01115076104.34 schema:affiliation grid-institutes:grid.411634.5
175 schema:familyName Li
176 schema:givenName Mingzhu
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115076104.34
178 rdf:type schema:Person
179 sg:person.01276052043.02 schema:affiliation grid-institutes:grid.411634.5
180 schema:familyName Wang
181 schema:givenName Jianliu
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276052043.02
183 rdf:type schema:Person
184 sg:person.01277437704.55 schema:affiliation grid-institutes:grid.411634.5
185 schema:familyName Li
186 schema:givenName Xiaoping
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277437704.55
188 rdf:type schema:Person
189 sg:person.01312311264.11 schema:affiliation grid-institutes:grid.411634.5
190 schema:familyName Wei
191 schema:givenName Lihui
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312311264.11
193 rdf:type schema:Person
194 sg:person.0611456002.06 schema:affiliation grid-institutes:grid.411634.5
195 schema:familyName Qi
196 schema:givenName Wenjuan
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611456002.06
198 rdf:type schema:Person
199 sg:person.0642462513.43 schema:affiliation grid-institutes:grid.411634.5
200 schema:familyName Shen
201 schema:givenName Danhua
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642462513.43
203 rdf:type schema:Person
204 sg:pub.10.1007/s004280000361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044503314
205 https://doi.org/10.1007/s004280000361
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/bjc.2012.219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011884577
208 https://doi.org/10.1038/bjc.2012.219
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/modpathol.3800718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050507625
211 https://doi.org/10.1038/modpathol.3800718
212 rdf:type schema:CreativeWork
213 grid-institutes:grid.411634.5 schema:alternateName Center of Gynecologic Oncology, Peking University People’s Hospital, 100044, Beijing, China
214 schema:name Center of Gynecologic Oncology, Peking University People’s Hospital, 100044, Beijing, China
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...