Real-time monitoring of nanoparticle retention in porous media View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03

AUTHORS

Jeff Rottman, Reyes Sierra-Alvarez, Farhang Shadman

ABSTRACT

Nanoparticles are not specifically targeted in conventional treatment schemes; consequently, typical wastewater treatment systems are ineffective for nanoparticles removal. With rapidly increasing concern over their health effects, improved understanding of nanoparticle transport and retention in porous media filters is critical because of its application in new wastewater treatment methods and for assessment of the fate of the discharged nanoparticles in soil. In this study, a unique and robust integrated method is developed and validated. Experimentally, this approach uses an on-line, real-time, and in situ method for measuring nanoparticle retention dynamics, eliminating the laborious and less accurate sampling and off-line analysis. The data analysis part is a process simulator which provides both kinetic properties of the retention process as well as the overall capacity and loading. This technique is validated by application to the transport and retention of TiO2 nanoparticles in two vastly different porous filtration media—activated carbon and sand. TiO2 retained concentrations ranged from 0.24 to 0.37 mg g−1 for activated carbon and 0.01–0.014 mg g−1 for sand. The integrated method presented here is useful for both comparison of the filtration effectiveness of various porous materials as well as for process optimization and scale-up for industrial applications. More... »

PAGES

71-76

References to SciGraph publications

Journal

TITLE

Environmental Chemistry Letters

ISSUE

1

VOLUME

11

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10311-012-0381-3

DOI

http://dx.doi.org/10.1007/s10311-012-0381-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051353220


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rottman", 
        "givenName": "Jeff", 
        "id": "sg:person.01125276517.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125276517.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sierra-Alvarez", 
        "givenName": "Reyes", 
        "id": "sg:person.0655104442.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655104442.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shadman", 
        "givenName": "Farhang", 
        "id": "sg:person.01261047576.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261047576.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/es802628n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012721052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es802628n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012721052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13698570701306807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019598157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b907658a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021108909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b907658a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021108909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/17435889.2.6.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043291505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-010-9912-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048247970", 
          "https://doi.org/10.1007/s11051-010-9912-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-010-9912-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048247970", 
          "https://doi.org/10.1007/s11051-010-9912-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050083585", 
          "https://doi.org/10.1038/nnano.2009.242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050083585", 
          "https://doi.org/10.1038/nnano.2009.242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2010.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050760737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2010.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051261016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0352303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055496393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0352303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055496393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es035354f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055496444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es035354f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055496444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es060847g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055499348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es060847g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055499348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es1000819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055501300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es1000819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055501300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es802978s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055515720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es802978s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055515720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la200251v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056153973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la200251v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056153973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/jeq2009.0423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069010254"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "Nanoparticles are not specifically targeted in conventional treatment schemes; consequently, typical wastewater treatment systems are ineffective for nanoparticles removal. With rapidly increasing concern over their health effects, improved understanding of nanoparticle transport and retention in porous media filters is critical because of its application in new wastewater treatment methods and for assessment of the fate of the discharged nanoparticles in soil. In this study, a unique and robust integrated method is developed and validated. Experimentally, this approach uses an on-line, real-time, and in situ method for measuring nanoparticle retention dynamics, eliminating the laborious and less accurate sampling and off-line analysis. The data analysis part is a process simulator which provides both kinetic properties of the retention process as well as the overall capacity and loading. This technique is validated by application to the transport and retention of TiO2 nanoparticles in two vastly different porous filtration media\u2014activated carbon and sand. TiO2 retained concentrations ranged from 0.24 to 0.37 mg g\u22121 for activated carbon and 0.01\u20130.014 mg g\u22121 for sand. The integrated method presented here is useful for both comparison of the filtration effectiveness of various porous materials as well as for process optimization and scale-up for industrial applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10311-012-0381-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033923", 
        "issn": [
          "1610-3653", 
          "1610-3661"
        ], 
        "name": "Environmental Chemistry Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Real-time monitoring of nanoparticle retention in porous media", 
    "pagination": "71-76", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f49fb7ccbc70e3788e0891b831776eed6a02a44c7ba7e56734eb78416accc13c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10311-012-0381-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051353220"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10311-012-0381-3", 
      "https://app.dimensions.ai/details/publication/pub.1051353220"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10311-012-0381-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10311-012-0381-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10311-012-0381-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10311-012-0381-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10311-012-0381-3'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10311-012-0381-3 schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author Neca8f85f1ee149bf818dcc18a96912ba
4 schema:citation sg:pub.10.1007/s11051-010-9912-7
5 sg:pub.10.1038/nnano.2009.242
6 https://doi.org/10.1016/j.chemosphere.2010.07.007
7 https://doi.org/10.1016/j.watres.2010.09.013
8 https://doi.org/10.1021/es0352303
9 https://doi.org/10.1021/es035354f
10 https://doi.org/10.1021/es060847g
11 https://doi.org/10.1021/es1000819
12 https://doi.org/10.1021/es802628n
13 https://doi.org/10.1021/es802978s
14 https://doi.org/10.1021/la200251v
15 https://doi.org/10.1039/b907658a
16 https://doi.org/10.1080/13698570701306807
17 https://doi.org/10.2134/jeq2009.0423
18 https://doi.org/10.2217/17435889.2.6.919
19 schema:datePublished 2013-03
20 schema:datePublishedReg 2013-03-01
21 schema:description Nanoparticles are not specifically targeted in conventional treatment schemes; consequently, typical wastewater treatment systems are ineffective for nanoparticles removal. With rapidly increasing concern over their health effects, improved understanding of nanoparticle transport and retention in porous media filters is critical because of its application in new wastewater treatment methods and for assessment of the fate of the discharged nanoparticles in soil. In this study, a unique and robust integrated method is developed and validated. Experimentally, this approach uses an on-line, real-time, and in situ method for measuring nanoparticle retention dynamics, eliminating the laborious and less accurate sampling and off-line analysis. The data analysis part is a process simulator which provides both kinetic properties of the retention process as well as the overall capacity and loading. This technique is validated by application to the transport and retention of TiO2 nanoparticles in two vastly different porous filtration media—activated carbon and sand. TiO2 retained concentrations ranged from 0.24 to 0.37 mg g−1 for activated carbon and 0.01–0.014 mg g−1 for sand. The integrated method presented here is useful for both comparison of the filtration effectiveness of various porous materials as well as for process optimization and scale-up for industrial applications.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N2fe17ccb4a394d59a139d5b1eb3ffe61
26 Ne1d5a5bb71b549cf9f30883dbbb2acda
27 sg:journal.1033923
28 schema:name Real-time monitoring of nanoparticle retention in porous media
29 schema:pagination 71-76
30 schema:productId N2675ae83a7b64edba4b0bbf99e1f4829
31 N461e63a30e344702badec873048e95d9
32 Ne01535b2970b42799c9d2d9cd850d0ff
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051353220
34 https://doi.org/10.1007/s10311-012-0381-3
35 schema:sdDatePublished 2019-04-10T13:18
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nfdcc53b699d645619d64aabfd1f29f8e
38 schema:url http://link.springer.com/10.1007%2Fs10311-012-0381-3
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N1dfb5859d8f74a3abed860f9d1b341eb rdf:first sg:person.0655104442.67
43 rdf:rest N2ca9998c31934e54b9570f34c1864806
44 N2675ae83a7b64edba4b0bbf99e1f4829 schema:name doi
45 schema:value 10.1007/s10311-012-0381-3
46 rdf:type schema:PropertyValue
47 N2ca9998c31934e54b9570f34c1864806 rdf:first sg:person.01261047576.27
48 rdf:rest rdf:nil
49 N2fe17ccb4a394d59a139d5b1eb3ffe61 schema:volumeNumber 11
50 rdf:type schema:PublicationVolume
51 N461e63a30e344702badec873048e95d9 schema:name readcube_id
52 schema:value f49fb7ccbc70e3788e0891b831776eed6a02a44c7ba7e56734eb78416accc13c
53 rdf:type schema:PropertyValue
54 Ne01535b2970b42799c9d2d9cd850d0ff schema:name dimensions_id
55 schema:value pub.1051353220
56 rdf:type schema:PropertyValue
57 Ne1d5a5bb71b549cf9f30883dbbb2acda schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 Neca8f85f1ee149bf818dcc18a96912ba rdf:first sg:person.01125276517.96
60 rdf:rest N1dfb5859d8f74a3abed860f9d1b341eb
61 Nfdcc53b699d645619d64aabfd1f29f8e schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
64 schema:name Engineering
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
67 schema:name Environmental Engineering
68 rdf:type schema:DefinedTerm
69 sg:journal.1033923 schema:issn 1610-3653
70 1610-3661
71 schema:name Environmental Chemistry Letters
72 rdf:type schema:Periodical
73 sg:person.01125276517.96 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
74 schema:familyName Rottman
75 schema:givenName Jeff
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125276517.96
77 rdf:type schema:Person
78 sg:person.01261047576.27 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
79 schema:familyName Shadman
80 schema:givenName Farhang
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261047576.27
82 rdf:type schema:Person
83 sg:person.0655104442.67 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
84 schema:familyName Sierra-Alvarez
85 schema:givenName Reyes
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655104442.67
87 rdf:type schema:Person
88 sg:pub.10.1007/s11051-010-9912-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048247970
89 https://doi.org/10.1007/s11051-010-9912-7
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/nnano.2009.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050083585
92 https://doi.org/10.1038/nnano.2009.242
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.chemosphere.2010.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051261016
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.watres.2010.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050760737
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1021/es0352303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055496393
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1021/es035354f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055496444
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1021/es060847g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055499348
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1021/es1000819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055501300
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1021/es802628n schema:sameAs https://app.dimensions.ai/details/publication/pub.1012721052
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1021/es802978s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055515720
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1021/la200251v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056153973
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1039/b907658a schema:sameAs https://app.dimensions.ai/details/publication/pub.1021108909
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1080/13698570701306807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019598157
115 rdf:type schema:CreativeWork
116 https://doi.org/10.2134/jeq2009.0423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069010254
117 rdf:type schema:CreativeWork
118 https://doi.org/10.2217/17435889.2.6.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043291505
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
121 schema:name Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, 85721, Tucson, AZ, USA
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...