High-throughput sequencing of amplicons for monitoring yeast biodiversity in must and during alcoholic fermentation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

Vanessa David, Sébastien Terrat, Khaled Herzine, Olivier Claisse, Sandrine Rousseaux, Raphaëlle Tourdot-Maréchal, Isabelle Masneuf-Pomarede, Lionel Ranjard, Hervé Alexandre

ABSTRACT

We compared pyrosequencing technology with the PCR-ITS-RFLP analysis of yeast isolates and denaturing gradient gel electrophoresis (DGGE). These methods gave divergent findings for the yeast population. DGGE was unsuitable for the quantification of biodiversity and its use for species detection was limited by the initial abundance of each species. The isolates identified by PCR-ITSRFLP were not fully representative of the true population. For population dynamics, high-throughput sequencing technology yielded results differing in some respects from those obtained with other approaches. This study demonstrates that 454 pyrosequencing of amplicons is more relevant than other methods for studying the yeast community on grapes and during alcoholic fermentation. Indeed, this high-throughput sequencing method detected larger numbers of species on grapes and identified species present during alcoholic fermentation that were undetectable with the other techniques. More... »

PAGES

811-821

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10295-014-1427-2

DOI

http://dx.doi.org/10.1007/s10295-014-1427-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047222886

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24659178


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biodiversity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Denaturing Gradient Gel Electrophoresis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ethanol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fermentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vitis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Yeasts", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Burgundy", 
          "id": "https://www.grid.ac/institutes/grid.5613.1", 
          "name": [
            "UMR 02102 PAM Universit\u00e9 de Bourgogne-AgroSup Dijon Laboratoire VALMIS Institut Universitaire de la Vigne et du Vin Jules Guyot, Universit\u00e9 de Bourgogne, 21078, Dijon Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "David", 
        "givenName": "Vanessa", 
        "id": "sg:person.01323173522.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323173522.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Institute for Agricultural Research", 
          "id": "https://www.grid.ac/institutes/grid.414548.8", 
          "name": [
            "INRA, UMR 1347 Agro\u00e9cologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000, Dijon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terrat", 
        "givenName": "S\u00e9bastien", 
        "id": "sg:person.01202645611.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202645611.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Burgundy", 
          "id": "https://www.grid.ac/institutes/grid.5613.1", 
          "name": [
            "UMR 02102 PAM Universit\u00e9 de Bourgogne-AgroSup Dijon Laboratoire VALMIS Institut Universitaire de la Vigne et du Vin Jules Guyot, Universit\u00e9 de Bourgogne, 21078, Dijon Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herzine", 
        "givenName": "Khaled", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRA, USC 1366 \u0152nologie, Universit\u00e9 de Bordeaux, ISVV, 210 chemin de Leysotte, 33140, Villenave d\u2019Ornon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Claisse", 
        "givenName": "Olivier", 
        "id": "sg:person.0604302174.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604302174.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Burgundy", 
          "id": "https://www.grid.ac/institutes/grid.5613.1", 
          "name": [
            "UMR 02102 PAM Universit\u00e9 de Bourgogne-AgroSup Dijon Laboratoire VALMIS Institut Universitaire de la Vigne et du Vin Jules Guyot, Universit\u00e9 de Bourgogne, 21078, Dijon Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseaux", 
        "givenName": "Sandrine", 
        "id": "sg:person.01135350715.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135350715.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Burgundy", 
          "id": "https://www.grid.ac/institutes/grid.5613.1", 
          "name": [
            "UMR 02102 PAM Universit\u00e9 de Bourgogne-AgroSup Dijon Laboratoire VALMIS Institut Universitaire de la Vigne et du Vin Jules Guyot, Universit\u00e9 de Bourgogne, 21078, Dijon Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tourdot-Mar\u00e9chal", 
        "givenName": "Rapha\u00eblle", 
        "id": "sg:person.01233203205.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233203205.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRA, USC 1366 \u0152nologie, Universit\u00e9 de Bordeaux, ISVV, 210 chemin de Leysotte, 33140, Villenave d\u2019Ornon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masneuf-Pomarede", 
        "givenName": "Isabelle", 
        "id": "sg:person.01077666735.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077666735.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Institute for Agricultural Research", 
          "id": "https://www.grid.ac/institutes/grid.414548.8", 
          "name": [
            "INRA, UMR 1347 Agro\u00e9cologie, 17, rue Sully, BP 86510, 21000, Dijon, France", 
            "INRA, UMR 1347 Agro\u00e9cologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000, Dijon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ranjard", 
        "givenName": "Lionel", 
        "id": "sg:person.0644202077.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644202077.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Burgundy", 
          "id": "https://www.grid.ac/institutes/grid.5613.1", 
          "name": [
            "UMR 02102 PAM Universit\u00e9 de Bourgogne-AgroSup Dijon Laboratoire VALMIS Institut Universitaire de la Vigne et du Vin Jules Guyot, Universit\u00e9 de Bourgogne, 21078, Dijon Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alexandre", 
        "givenName": "Herv\u00e9", 
        "id": "sg:person.0606060453.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606060453.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/aem.01275-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002337984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fm.2012.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003135619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03175547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003322030", 
          "https://doi.org/10.1007/bf03175547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03175547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003322030", 
          "https://doi.org/10.1007/bf03175547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fm.2012.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004697248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0035507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004802476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-372180-8.50042-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004812051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85463-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004939736", 
          "https://doi.org/10.1007/978-3-540-85463-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85463-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004939736", 
          "https://doi.org/10.1007/978-3-540-85463-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.2000.tb09210.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006637528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.2000.tb09210.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006637528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0052609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007511033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfoodmicro.2011.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010694202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfoodmicro.2010.11.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012452695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.10.4884-4893.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013455246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0066437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014391269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018224286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2672.1965.tb02167.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019269142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01279-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019863057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.05220-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023108647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1078/0723-2020-00097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023108880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13213-012-0478-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024650185", 
          "https://doi.org/10.1007/s13213-012-0478-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2621.1996.tb10971.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026808508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.2011.02290.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031850927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1605(03)00245-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033966574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1605(03)00245-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033966574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035472857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036641443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036641443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.femsyr.2004.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038908013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0024166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043311191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0036357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043742810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-006-0798-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044410497", 
          "https://doi.org/10.1007/s00253-006-0798-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-006-0798-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044410497", 
          "https://doi.org/10.1007/s00253-006-0798-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0238.2000.tb00158.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045229272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfoodmicro.2012.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045676918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10295-011-1020-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046281115", 
          "https://doi.org/10.1007/s10295-011-1020-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1751-7915.2011.00307.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048033387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10021-013-9650-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051536547", 
          "https://doi.org/10.1007/s10021-013-9650-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13693780600564613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058387725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-49-1-329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060349898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21548/24-2-2640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092081945"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "We compared pyrosequencing technology with the PCR-ITS-RFLP analysis of yeast isolates and denaturing gradient gel electrophoresis (DGGE). These methods gave divergent findings for the yeast population. DGGE was unsuitable for the quantification of biodiversity and its use for species detection was limited by the initial abundance of each species. The isolates identified by PCR-ITSRFLP were not fully representative of the true population. For population dynamics, high-throughput sequencing technology yielded results differing in some respects from those obtained with other approaches. This study demonstrates that 454 pyrosequencing of amplicons is more relevant than other methods for studying the yeast community on grapes and during alcoholic fermentation. Indeed, this high-throughput sequencing method detected larger numbers of species on grapes and identified species present during alcoholic fermentation that were undetectable with the other techniques.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10295-014-1427-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1096599", 
        "issn": [
          "1367-5435", 
          "1476-5535"
        ], 
        "name": "Journal of Industrial Microbiology & Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "High-throughput sequencing of amplicons for monitoring yeast biodiversity in must and during alcoholic fermentation", 
    "pagination": "811-821", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0f46f5fa066c4685234982b7003f9f8ac869a9703a2480cd0ad82f7fd2959b5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24659178"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9705544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10295-014-1427-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047222886"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10295-014-1427-2", 
      "https://app.dimensions.ai/details/publication/pub.1047222886"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000491.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10295-014-1427-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10295-014-1427-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10295-014-1427-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10295-014-1427-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10295-014-1427-2'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      74 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10295-014-1427-2 schema:about N0f810029b74e491598d992f766ed9d1f
2 N75dfbd8b37ca42759d514215422fe96b
3 N9d0ca332c0b2440ab0c9034d05dbe572
4 Nab432fc2b7b54560b553fd4b5e2715b0
5 Nae7d23d470ca464a9ee54fabd3dfdf12
6 Nafb9402e6b4a43beb7c74c68500d96a9
7 Nbc8211aab0d144bba54187a23346423a
8 Nf0b49a22eb7345d789c2fcc2845b6b54
9 anzsrc-for:05
10 anzsrc-for:0502
11 schema:author N6efe836fc0a64aaeb70bf316f923bcce
12 schema:citation sg:pub.10.1007/978-3-540-85463-0_3
13 sg:pub.10.1007/bf03175547
14 sg:pub.10.1007/s00253-006-0798-3
15 sg:pub.10.1007/s10021-013-9650-7
16 sg:pub.10.1007/s10295-011-1020-x
17 sg:pub.10.1007/s13213-012-0478-8
18 sg:pub.10.1038/nature03959
19 https://doi.org/10.1016/b978-0-12-372180-8.50042-1
20 https://doi.org/10.1016/j.femsyr.2004.05.004
21 https://doi.org/10.1016/j.fm.2012.03.011
22 https://doi.org/10.1016/j.fm.2012.06.006
23 https://doi.org/10.1016/j.ijfoodmicro.2010.11.040
24 https://doi.org/10.1016/j.ijfoodmicro.2011.08.026
25 https://doi.org/10.1016/j.ijfoodmicro.2012.12.019
26 https://doi.org/10.1016/s0168-1605(03)00245-9
27 https://doi.org/10.1078/0723-2020-00097
28 https://doi.org/10.1080/13693780600564613
29 https://doi.org/10.1093/bioinformatics/btp157
30 https://doi.org/10.1093/bioinformatics/btp326
31 https://doi.org/10.1099/00207713-49-1-329
32 https://doi.org/10.1111/j.1365-2621.1996.tb10971.x
33 https://doi.org/10.1111/j.1365-2672.1965.tb02167.x
34 https://doi.org/10.1111/j.1462-2920.2009.02051.x
35 https://doi.org/10.1111/j.1574-6968.2000.tb09210.x
36 https://doi.org/10.1111/j.1574-6968.2011.02290.x
37 https://doi.org/10.1111/j.1751-7915.2011.00307.x
38 https://doi.org/10.1111/j.1755-0238.2000.tb00158.x
39 https://doi.org/10.1128/aem.01275-06
40 https://doi.org/10.1128/aem.01279-07
41 https://doi.org/10.1128/aem.05220-11
42 https://doi.org/10.1128/aem.68.10.4884-4893.2002
43 https://doi.org/10.1371/journal.pone.0024166
44 https://doi.org/10.1371/journal.pone.0035507
45 https://doi.org/10.1371/journal.pone.0036357
46 https://doi.org/10.1371/journal.pone.0052609
47 https://doi.org/10.1371/journal.pone.0066437
48 https://doi.org/10.21548/24-2-2640
49 schema:datePublished 2014-05
50 schema:datePublishedReg 2014-05-01
51 schema:description We compared pyrosequencing technology with the PCR-ITS-RFLP analysis of yeast isolates and denaturing gradient gel electrophoresis (DGGE). These methods gave divergent findings for the yeast population. DGGE was unsuitable for the quantification of biodiversity and its use for species detection was limited by the initial abundance of each species. The isolates identified by PCR-ITSRFLP were not fully representative of the true population. For population dynamics, high-throughput sequencing technology yielded results differing in some respects from those obtained with other approaches. This study demonstrates that 454 pyrosequencing of amplicons is more relevant than other methods for studying the yeast community on grapes and during alcoholic fermentation. Indeed, this high-throughput sequencing method detected larger numbers of species on grapes and identified species present during alcoholic fermentation that were undetectable with the other techniques.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N8c30fa761abc4c409b71182faa5ea9ca
56 Nc3e3efcb556c40f0ae229b4409192774
57 sg:journal.1096599
58 schema:name High-throughput sequencing of amplicons for monitoring yeast biodiversity in must and during alcoholic fermentation
59 schema:pagination 811-821
60 schema:productId N2f3a199a846745f69a0f478141f58faa
61 N97054f0a6c3147aa9a0062d27e7d87a5
62 Nb53d8c72f67140ce993c844d2f72b392
63 Nc28a5a4d38554a169d690ae71202b233
64 Nd857f79d25d24bfcafcb306758155afd
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047222886
66 https://doi.org/10.1007/s10295-014-1427-2
67 schema:sdDatePublished 2019-04-10T21:32
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nb8b6b4561db649fc8a7c3ce006f281fc
70 schema:url http://link.springer.com/10.1007/s10295-014-1427-2
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N08852cc1b60743ae8814e7999f7f7a35 rdf:first sg:person.0606060453.62
75 rdf:rest rdf:nil
76 N08ad28eae0ee4b76bbd01fd7bdb54b23 rdf:first sg:person.01202645611.55
77 rdf:rest N9bf46100267645e1bc2f0bdaa8d636cf
78 N0f810029b74e491598d992f766ed9d1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Yeasts
80 rdf:type schema:DefinedTerm
81 N2f3a199a846745f69a0f478141f58faa schema:name pubmed_id
82 schema:value 24659178
83 rdf:type schema:PropertyValue
84 N5b0d9fa281f748999c272c61d5c1b4fd schema:name INRA, USC 1366 Œnologie, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33140, Villenave d’Ornon, France
85 rdf:type schema:Organization
86 N6eaae379a27a4908baa57904e6c2a528 rdf:first sg:person.0644202077.56
87 rdf:rest N08852cc1b60743ae8814e7999f7f7a35
88 N6efe836fc0a64aaeb70bf316f923bcce rdf:first sg:person.01323173522.20
89 rdf:rest N08ad28eae0ee4b76bbd01fd7bdb54b23
90 N75dfbd8b37ca42759d514215422fe96b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Fermentation
92 rdf:type schema:DefinedTerm
93 N8c30fa761abc4c409b71182faa5ea9ca schema:issueNumber 5
94 rdf:type schema:PublicationIssue
95 N97054f0a6c3147aa9a0062d27e7d87a5 schema:name readcube_id
96 schema:value e0f46f5fa066c4685234982b7003f9f8ac869a9703a2480cd0ad82f7fd2959b5
97 rdf:type schema:PropertyValue
98 N9bf46100267645e1bc2f0bdaa8d636cf rdf:first Nfd71924c62b44da482a134b4d20bada2
99 rdf:rest Nf7e6ca7d3a054700be790b1ae8db2623
100 N9d0ca332c0b2440ab0c9034d05dbe572 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Biodiversity
102 rdf:type schema:DefinedTerm
103 Nab432fc2b7b54560b553fd4b5e2715b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name High-Throughput Nucleotide Sequencing
105 rdf:type schema:DefinedTerm
106 Nae7d23d470ca464a9ee54fabd3dfdf12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Polymerase Chain Reaction
108 rdf:type schema:DefinedTerm
109 Nafb9402e6b4a43beb7c74c68500d96a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Ethanol
111 rdf:type schema:DefinedTerm
112 Nb53d8c72f67140ce993c844d2f72b392 schema:name dimensions_id
113 schema:value pub.1047222886
114 rdf:type schema:PropertyValue
115 Nb8b6b4561db649fc8a7c3ce006f281fc schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nbc8211aab0d144bba54187a23346423a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Denaturing Gradient Gel Electrophoresis
119 rdf:type schema:DefinedTerm
120 Nbf1caa4e07dd4f1c8e8bcc6c2f3c4a8a rdf:first sg:person.01233203205.85
121 rdf:rest Nf1af109c921240abbc0ee43fc44002f7
122 Nc28a5a4d38554a169d690ae71202b233 schema:name doi
123 schema:value 10.1007/s10295-014-1427-2
124 rdf:type schema:PropertyValue
125 Nc3e3efcb556c40f0ae229b4409192774 schema:volumeNumber 41
126 rdf:type schema:PublicationVolume
127 Nd1b582f16c2f443ba8eac84151ca443d rdf:first sg:person.01135350715.13
128 rdf:rest Nbf1caa4e07dd4f1c8e8bcc6c2f3c4a8a
129 Nd857f79d25d24bfcafcb306758155afd schema:name nlm_unique_id
130 schema:value 9705544
131 rdf:type schema:PropertyValue
132 Ne2bbd8adf8d041e290c1457ba709f61e schema:name INRA, USC 1366 Œnologie, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33140, Villenave d’Ornon, France
133 rdf:type schema:Organization
134 Nf0b49a22eb7345d789c2fcc2845b6b54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Vitis
136 rdf:type schema:DefinedTerm
137 Nf1af109c921240abbc0ee43fc44002f7 rdf:first sg:person.01077666735.62
138 rdf:rest N6eaae379a27a4908baa57904e6c2a528
139 Nf7e6ca7d3a054700be790b1ae8db2623 rdf:first sg:person.0604302174.75
140 rdf:rest Nd1b582f16c2f443ba8eac84151ca443d
141 Nfd71924c62b44da482a134b4d20bada2 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
142 schema:familyName Herzine
143 schema:givenName Khaled
144 rdf:type schema:Person
145 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
146 schema:name Environmental Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
149 schema:name Environmental Science and Management
150 rdf:type schema:DefinedTerm
151 sg:journal.1096599 schema:issn 1367-5435
152 1476-5535
153 schema:name Journal of Industrial Microbiology & Biotechnology
154 rdf:type schema:Periodical
155 sg:person.01077666735.62 schema:affiliation N5b0d9fa281f748999c272c61d5c1b4fd
156 schema:familyName Masneuf-Pomarede
157 schema:givenName Isabelle
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077666735.62
159 rdf:type schema:Person
160 sg:person.01135350715.13 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
161 schema:familyName Rousseaux
162 schema:givenName Sandrine
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135350715.13
164 rdf:type schema:Person
165 sg:person.01202645611.55 schema:affiliation https://www.grid.ac/institutes/grid.414548.8
166 schema:familyName Terrat
167 schema:givenName Sébastien
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202645611.55
169 rdf:type schema:Person
170 sg:person.01233203205.85 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
171 schema:familyName Tourdot-Maréchal
172 schema:givenName Raphaëlle
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233203205.85
174 rdf:type schema:Person
175 sg:person.01323173522.20 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
176 schema:familyName David
177 schema:givenName Vanessa
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323173522.20
179 rdf:type schema:Person
180 sg:person.0604302174.75 schema:affiliation Ne2bbd8adf8d041e290c1457ba709f61e
181 schema:familyName Claisse
182 schema:givenName Olivier
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604302174.75
184 rdf:type schema:Person
185 sg:person.0606060453.62 schema:affiliation https://www.grid.ac/institutes/grid.5613.1
186 schema:familyName Alexandre
187 schema:givenName Hervé
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606060453.62
189 rdf:type schema:Person
190 sg:person.0644202077.56 schema:affiliation https://www.grid.ac/institutes/grid.414548.8
191 schema:familyName Ranjard
192 schema:givenName Lionel
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644202077.56
194 rdf:type schema:Person
195 sg:pub.10.1007/978-3-540-85463-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004939736
196 https://doi.org/10.1007/978-3-540-85463-0_3
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/bf03175547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003322030
199 https://doi.org/10.1007/bf03175547
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s00253-006-0798-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044410497
202 https://doi.org/10.1007/s00253-006-0798-3
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s10021-013-9650-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051536547
205 https://doi.org/10.1007/s10021-013-9650-7
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s10295-011-1020-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046281115
208 https://doi.org/10.1007/s10295-011-1020-x
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s13213-012-0478-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024650185
211 https://doi.org/10.1007/s13213-012-0478-8
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
214 https://doi.org/10.1038/nature03959
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/b978-0-12-372180-8.50042-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004812051
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.femsyr.2004.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038908013
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.fm.2012.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003135619
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.fm.2012.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004697248
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.ijfoodmicro.2010.11.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012452695
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.ijfoodmicro.2011.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010694202
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.ijfoodmicro.2012.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045676918
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0168-1605(03)00245-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033966574
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1078/0723-2020-00097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023108880
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1080/13693780600564613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058387725
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/bioinformatics/btp157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018224286
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/bioinformatics/btp326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035472857
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1099/00207713-49-1-329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060349898
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1111/j.1365-2621.1996.tb10971.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026808508
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1111/j.1365-2672.1965.tb02167.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019269142
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1111/j.1462-2920.2009.02051.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036641443
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1111/j.1574-6968.2000.tb09210.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006637528
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1111/j.1574-6968.2011.02290.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031850927
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1111/j.1751-7915.2011.00307.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048033387
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1111/j.1755-0238.2000.tb00158.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045229272
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1128/aem.01275-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002337984
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1128/aem.01279-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019863057
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1128/aem.05220-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023108647
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1128/aem.68.10.4884-4893.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013455246
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1371/journal.pone.0024166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043311191
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1371/journal.pone.0035507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004802476
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1371/journal.pone.0036357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043742810
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1371/journal.pone.0052609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007511033
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1371/journal.pone.0066437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014391269
273 rdf:type schema:CreativeWork
274 https://doi.org/10.21548/24-2-2640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092081945
275 rdf:type schema:CreativeWork
276 https://www.grid.ac/institutes/grid.414548.8 schema:alternateName French National Institute for Agricultural Research
277 schema:name INRA, UMR 1347 Agroécologie, 17, rue Sully, BP 86510, 21000, Dijon, France
278 INRA, UMR 1347 Agroécologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000, Dijon, France
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.5613.1 schema:alternateName University of Burgundy
281 schema:name UMR 02102 PAM Université de Bourgogne-AgroSup Dijon Laboratoire VALMIS Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 21078, Dijon Cedex, France
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...