Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-03

AUTHORS

Henry Lin, George N. Bennett, Ka-Yiu San

ABSTRACT

In mixed-acid fermentation, succinate synthesis requires one mole of phosphoenolpyruvate (PEP), one mole of CO2, and two moles of NADH for every mole of succinate to be formed. Different carbon sources with different properties were used to address these requirements. Sorbitol generates one more mole of NADH than glucose. Fermentation of sorbitol was shown in this study (and by others) to produce significantly more succinate than fermentation of glucose, due to increased NADH availability. Xylose fermentation conserves the intracellular PEP pool, since its transport does not require the phosphotransferase system normally used for glucose transport. The extra PEP can then be assimilated in the succinate pathway to improve production. In this study, fermentation of xylose did yield higher succinate production than glucose fermentation. Subsequent inactivation of the acetate and lactate pathways was performed to study metabolite redistribution and the effect on succinate production. With the acetate pathway inactivated, significant carbon flux shifted toward lactate rather than succinate. When both acetate and lactate pathways were inactivated, succinate yield ultimately increased with a concomitant increase in ethanol yield. More... »

PAGES

87-93

Journal

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10295-005-0206-5

DOI

http://dx.doi.org/10.1007/s10295-005-0206-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033883421

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15770511


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acetates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fermentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidation-Reduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sorbitol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Succinic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Xylose", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Bioengineering MS 142, Rice University, PO Box 1892, 77251-1892, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Henry", 
        "id": "sg:person.01214115720.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214115720.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Biochemistry and Cell Biology MS 140, Rice University, P.O. Box 1892, 77251-1892, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bennett", 
        "givenName": "George N.", 
        "id": "sg:person.0703420315.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420315.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Bioengineering MS 142, Rice University, PO Box 1892, 77251-1892, Houston, Texas, USA", 
            "Department of Chemical Engineering, Rice University, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "San", 
        "givenName": "Ka-Yiu", 
        "id": "sg:person.0671627317.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671627317.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/mben.1998.0111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000305639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01023351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011670367", 
          "https://doi.org/10.1007/bf01023351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02920202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020502559", 
          "https://doi.org/10.1007/bf02920202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.67.1.148-154.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028613730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1997.t01-1-00452.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029917322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-143-1-187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030708057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002530051431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036378299", 
          "https://doi.org/10.1007/s002530051431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-001-0899-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037208698", 
          "https://doi.org/10.1007/s00253-001-0899-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp990095c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038520471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:bile.0000015925.52287.1f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041787814", 
          "https://doi.org/10.1023/b:bile.0000015925.52287.1f"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2744(80)90176-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044726072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2744(80)90176-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044726072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mben.2001.0220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050017334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-138-4-685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060368337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-144-5-1423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060369867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076833526", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jbchem.a123350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078049714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jbchem.a132349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079905404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081693529", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jbchem.a124909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082852472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082887369", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083113238", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-03", 
    "datePublishedReg": "2005-03-01", 
    "description": "In mixed-acid fermentation, succinate synthesis requires one mole of phosphoenolpyruvate (PEP), one mole of CO2, and two moles of NADH for every mole of succinate to be formed. Different carbon sources with different properties were used to address these requirements. Sorbitol generates one more mole of NADH than glucose. Fermentation of sorbitol was shown in this study (and by others) to produce significantly more succinate than fermentation of glucose, due to increased NADH availability. Xylose fermentation conserves the intracellular PEP pool, since its transport does not require the phosphotransferase system normally used for glucose transport. The extra PEP can then be assimilated in the succinate pathway to improve production. In this study, fermentation of xylose did yield higher succinate production than glucose fermentation. Subsequent inactivation of the acetate and lactate pathways was performed to study metabolite redistribution and the effect on succinate production. With the acetate pathway inactivated, significant carbon flux shifted toward lactate rather than succinate. When both acetate and lactate pathways were inactivated, succinate yield ultimately increased with a concomitant increase in ethanol yield.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10295-005-0206-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3019651", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3030831", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3006003", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1096599", 
        "issn": [
          "1367-5435", 
          "1476-5535"
        ], 
        "name": "Journal of Industrial Microbiology & Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli", 
    "pagination": "87-93", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a16975ab184b762e70c404894d6f92a81e63e045eed41395366e2823de949a2a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15770511"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9705544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10295-005-0206-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033883421"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10295-005-0206-5", 
      "https://app.dimensions.ai/details/publication/pub.1033883421"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13102_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10295-005-0206-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10295-005-0206-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10295-005-0206-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10295-005-0206-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10295-005-0206-5'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      61 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10295-005-0206-5 schema:about N00eb12ae0d4b43e386ce1ec7987fdb6b
2 N1047577b2d664fa493be561762363c2c
3 N6118eaaeea3d4f09b5b5c31dbd8bda20
4 N705954d4e9984e5b844fa9e504686f4a
5 N7d5371c1e8d947d1971ed645403b0939
6 N7d768a95e90b47b392f18684ea9f02b0
7 N808ca29823c141aca82d528105f67dee
8 N8568fe3e3cd642f9bafa5412c7244e1a
9 Na86dc21fa67f45678edca5c42ab6f103
10 Nb4d766008a6a4fca93a04aa1146d1fcb
11 Nd105570ff7024bd6b9541b086aa91c5c
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Ncc9e5ba1efef43dca3223decb3a18571
15 schema:citation sg:pub.10.1007/bf01023351
16 sg:pub.10.1007/bf02920202
17 sg:pub.10.1007/s00253-001-0899-y
18 sg:pub.10.1007/s002530051431
19 sg:pub.10.1023/b:bile.0000015925.52287.1f
20 https://app.dimensions.ai/details/publication/pub.1076833526
21 https://app.dimensions.ai/details/publication/pub.1081693529
22 https://app.dimensions.ai/details/publication/pub.1082887369
23 https://app.dimensions.ai/details/publication/pub.1083113238
24 https://doi.org/10.1006/mben.1998.0111
25 https://doi.org/10.1006/mben.2001.0220
26 https://doi.org/10.1016/0005-2744(80)90176-x
27 https://doi.org/10.1021/bp990095c
28 https://doi.org/10.1093/oxfordjournals.jbchem.a123350
29 https://doi.org/10.1093/oxfordjournals.jbchem.a124909
30 https://doi.org/10.1093/oxfordjournals.jbchem.a132349
31 https://doi.org/10.1099/00221287-138-4-685
32 https://doi.org/10.1099/00221287-143-1-187
33 https://doi.org/10.1099/00221287-144-5-1423
34 https://doi.org/10.1111/j.1432-1033.1997.t01-1-00452.x
35 https://doi.org/10.1128/aem.67.1.148-154.2001
36 schema:datePublished 2005-03
37 schema:datePublishedReg 2005-03-01
38 schema:description In mixed-acid fermentation, succinate synthesis requires one mole of phosphoenolpyruvate (PEP), one mole of CO2, and two moles of NADH for every mole of succinate to be formed. Different carbon sources with different properties were used to address these requirements. Sorbitol generates one more mole of NADH than glucose. Fermentation of sorbitol was shown in this study (and by others) to produce significantly more succinate than fermentation of glucose, due to increased NADH availability. Xylose fermentation conserves the intracellular PEP pool, since its transport does not require the phosphotransferase system normally used for glucose transport. The extra PEP can then be assimilated in the succinate pathway to improve production. In this study, fermentation of xylose did yield higher succinate production than glucose fermentation. Subsequent inactivation of the acetate and lactate pathways was performed to study metabolite redistribution and the effect on succinate production. With the acetate pathway inactivated, significant carbon flux shifted toward lactate rather than succinate. When both acetate and lactate pathways were inactivated, succinate yield ultimately increased with a concomitant increase in ethanol yield.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf Naf41568c1e5b4507bc4102e16b3f9103
43 Nb209119be3b549499ffcf59ed1ac8712
44 sg:journal.1096599
45 schema:name Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli
46 schema:pagination 87-93
47 schema:productId N027fe66b68424bb1b1bcefa2db6c2fb8
48 N0f69ca73a75f4a3aae16d1af0c48b87e
49 N5162237ae887495b89bb9d507b28aed1
50 N9b4e6611401b420889f30ea77d6cd3da
51 Nedd0dfc215284ed198a27bb8dbec6c67
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033883421
53 https://doi.org/10.1007/s10295-005-0206-5
54 schema:sdDatePublished 2019-04-11T14:32
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N0b3bfa3686034401a660e90b092e6998
57 schema:url http://link.springer.com/10.1007/s10295-005-0206-5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N00eb12ae0d4b43e386ce1ec7987fdb6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Glucose
63 rdf:type schema:DefinedTerm
64 N027fe66b68424bb1b1bcefa2db6c2fb8 schema:name dimensions_id
65 schema:value pub.1033883421
66 rdf:type schema:PropertyValue
67 N0b3bfa3686034401a660e90b092e6998 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N0f69ca73a75f4a3aae16d1af0c48b87e schema:name nlm_unique_id
70 schema:value 9705544
71 rdf:type schema:PropertyValue
72 N1047577b2d664fa493be561762363c2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Fermentation
74 rdf:type schema:DefinedTerm
75 N14562357fed0441786a773400541a536 rdf:first sg:person.0671627317.45
76 rdf:rest rdf:nil
77 N2bfe1fedb09148d0b01c5cb4d868239d rdf:first sg:person.0703420315.35
78 rdf:rest N14562357fed0441786a773400541a536
79 N5162237ae887495b89bb9d507b28aed1 schema:name pubmed_id
80 schema:value 15770511
81 rdf:type schema:PropertyValue
82 N6118eaaeea3d4f09b5b5c31dbd8bda20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Escherichia coli
84 rdf:type schema:DefinedTerm
85 N705954d4e9984e5b844fa9e504686f4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Xylose
87 rdf:type schema:DefinedTerm
88 N7d5371c1e8d947d1971ed645403b0939 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Acetates
90 rdf:type schema:DefinedTerm
91 N7d768a95e90b47b392f18684ea9f02b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Sorbitol
93 rdf:type schema:DefinedTerm
94 N808ca29823c141aca82d528105f67dee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Lactic Acid
96 rdf:type schema:DefinedTerm
97 N8568fe3e3cd642f9bafa5412c7244e1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Succinic Acid
99 rdf:type schema:DefinedTerm
100 N9b4e6611401b420889f30ea77d6cd3da schema:name readcube_id
101 schema:value a16975ab184b762e70c404894d6f92a81e63e045eed41395366e2823de949a2a
102 rdf:type schema:PropertyValue
103 Na86dc21fa67f45678edca5c42ab6f103 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Carbon
105 rdf:type schema:DefinedTerm
106 Naf41568c1e5b4507bc4102e16b3f9103 schema:volumeNumber 32
107 rdf:type schema:PublicationVolume
108 Nb209119be3b549499ffcf59ed1ac8712 schema:issueNumber 3
109 rdf:type schema:PublicationIssue
110 Nb4d766008a6a4fca93a04aa1146d1fcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Oxidation-Reduction
112 rdf:type schema:DefinedTerm
113 Ncc9e5ba1efef43dca3223decb3a18571 rdf:first sg:person.01214115720.87
114 rdf:rest N2bfe1fedb09148d0b01c5cb4d868239d
115 Nd105570ff7024bd6b9541b086aa91c5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Biotechnology
117 rdf:type schema:DefinedTerm
118 Nedd0dfc215284ed198a27bb8dbec6c67 schema:name doi
119 schema:value 10.1007/s10295-005-0206-5
120 rdf:type schema:PropertyValue
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biochemistry and Cell Biology
126 rdf:type schema:DefinedTerm
127 sg:grant.3006003 http://pending.schema.org/fundedItem sg:pub.10.1007/s10295-005-0206-5
128 rdf:type schema:MonetaryGrant
129 sg:grant.3019651 http://pending.schema.org/fundedItem sg:pub.10.1007/s10295-005-0206-5
130 rdf:type schema:MonetaryGrant
131 sg:grant.3030831 http://pending.schema.org/fundedItem sg:pub.10.1007/s10295-005-0206-5
132 rdf:type schema:MonetaryGrant
133 sg:journal.1096599 schema:issn 1367-5435
134 1476-5535
135 schema:name Journal of Industrial Microbiology & Biotechnology
136 rdf:type schema:Periodical
137 sg:person.01214115720.87 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
138 schema:familyName Lin
139 schema:givenName Henry
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214115720.87
141 rdf:type schema:Person
142 sg:person.0671627317.45 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
143 schema:familyName San
144 schema:givenName Ka-Yiu
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671627317.45
146 rdf:type schema:Person
147 sg:person.0703420315.35 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
148 schema:familyName Bennett
149 schema:givenName George N.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420315.35
151 rdf:type schema:Person
152 sg:pub.10.1007/bf01023351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011670367
153 https://doi.org/10.1007/bf01023351
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/bf02920202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020502559
156 https://doi.org/10.1007/bf02920202
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s00253-001-0899-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037208698
159 https://doi.org/10.1007/s00253-001-0899-y
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s002530051431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036378299
162 https://doi.org/10.1007/s002530051431
163 rdf:type schema:CreativeWork
164 sg:pub.10.1023/b:bile.0000015925.52287.1f schema:sameAs https://app.dimensions.ai/details/publication/pub.1041787814
165 https://doi.org/10.1023/b:bile.0000015925.52287.1f
166 rdf:type schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1076833526 schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1081693529 schema:CreativeWork
169 https://app.dimensions.ai/details/publication/pub.1082887369 schema:CreativeWork
170 https://app.dimensions.ai/details/publication/pub.1083113238 schema:CreativeWork
171 https://doi.org/10.1006/mben.1998.0111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000305639
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1006/mben.2001.0220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050017334
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/0005-2744(80)90176-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044726072
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/bp990095c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038520471
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/oxfordjournals.jbchem.a123350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078049714
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/oxfordjournals.jbchem.a124909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082852472
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/oxfordjournals.jbchem.a132349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079905404
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1099/00221287-138-4-685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060368337
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1099/00221287-143-1-187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030708057
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1099/00221287-144-5-1423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060369867
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.1432-1033.1997.t01-1-00452.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029917322
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1128/aem.67.1.148-154.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028613730
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.21940.3e schema:alternateName Rice University
196 schema:name Department of Biochemistry and Cell Biology MS 140, Rice University, P.O. Box 1892, 77251-1892, Houston, Texas, USA
197 Department of Bioengineering MS 142, Rice University, PO Box 1892, 77251-1892, Houston, Texas, USA
198 Department of Chemical Engineering, Rice University, Houston, Texas, USA
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...