Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-03

AUTHORS

Henry Lin, George N. Bennett, Ka-Yiu San

ABSTRACT

In mixed-acid fermentation, succinate synthesis requires one mole of phosphoenolpyruvate (PEP), one mole of CO2, and two moles of NADH for every mole of succinate to be formed. Different carbon sources with different properties were used to address these requirements. Sorbitol generates one more mole of NADH than glucose. Fermentation of sorbitol was shown in this study (and by others) to produce significantly more succinate than fermentation of glucose, due to increased NADH availability. Xylose fermentation conserves the intracellular PEP pool, since its transport does not require the phosphotransferase system normally used for glucose transport. The extra PEP can then be assimilated in the succinate pathway to improve production. In this study, fermentation of xylose did yield higher succinate production than glucose fermentation. Subsequent inactivation of the acetate and lactate pathways was performed to study metabolite redistribution and the effect on succinate production. With the acetate pathway inactivated, significant carbon flux shifted toward lactate rather than succinate. When both acetate and lactate pathways were inactivated, succinate yield ultimately increased with a concomitant increase in ethanol yield. More... »

PAGES

87-93

References to SciGraph publications

Journal

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10295-005-0206-5

DOI

http://dx.doi.org/10.1007/s10295-005-0206-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033883421

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15770511


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acetates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fermentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidation-Reduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sorbitol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Succinic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Xylose", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Bioengineering MS 142, Rice University, PO Box 1892, 77251-1892, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Henry", 
        "id": "sg:person.01214115720.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214115720.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Biochemistry and Cell Biology MS 140, Rice University, P.O. Box 1892, 77251-1892, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bennett", 
        "givenName": "George N.", 
        "id": "sg:person.0703420315.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420315.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rice University", 
          "id": "https://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Bioengineering MS 142, Rice University, PO Box 1892, 77251-1892, Houston, Texas, USA", 
            "Department of Chemical Engineering, Rice University, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "San", 
        "givenName": "Ka-Yiu", 
        "id": "sg:person.0671627317.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671627317.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/mben.1998.0111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000305639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01023351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011670367", 
          "https://doi.org/10.1007/bf01023351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02920202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020502559", 
          "https://doi.org/10.1007/bf02920202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.67.1.148-154.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028613730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1997.t01-1-00452.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029917322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-143-1-187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030708057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002530051431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036378299", 
          "https://doi.org/10.1007/s002530051431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-001-0899-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037208698", 
          "https://doi.org/10.1007/s00253-001-0899-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp990095c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038520471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:bile.0000015925.52287.1f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041787814", 
          "https://doi.org/10.1023/b:bile.0000015925.52287.1f"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2744(80)90176-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044726072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2744(80)90176-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044726072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mben.2001.0220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050017334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-138-4-685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060368337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-144-5-1423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060369867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076833526", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jbchem.a123350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078049714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jbchem.a132349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079905404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081693529", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.jbchem.a124909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082852472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082887369", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083113238", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-03", 
    "datePublishedReg": "2005-03-01", 
    "description": "In mixed-acid fermentation, succinate synthesis requires one mole of phosphoenolpyruvate (PEP), one mole of CO2, and two moles of NADH for every mole of succinate to be formed. Different carbon sources with different properties were used to address these requirements. Sorbitol generates one more mole of NADH than glucose. Fermentation of sorbitol was shown in this study (and by others) to produce significantly more succinate than fermentation of glucose, due to increased NADH availability. Xylose fermentation conserves the intracellular PEP pool, since its transport does not require the phosphotransferase system normally used for glucose transport. The extra PEP can then be assimilated in the succinate pathway to improve production. In this study, fermentation of xylose did yield higher succinate production than glucose fermentation. Subsequent inactivation of the acetate and lactate pathways was performed to study metabolite redistribution and the effect on succinate production. With the acetate pathway inactivated, significant carbon flux shifted toward lactate rather than succinate. When both acetate and lactate pathways were inactivated, succinate yield ultimately increased with a concomitant increase in ethanol yield.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10295-005-0206-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3019651", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3030831", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3006003", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1096599", 
        "issn": [
          "1367-5435", 
          "1476-5535"
        ], 
        "name": "Journal of Industrial Microbiology & Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli", 
    "pagination": "87-93", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a16975ab184b762e70c404894d6f92a81e63e045eed41395366e2823de949a2a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15770511"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9705544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10295-005-0206-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033883421"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10295-005-0206-5", 
      "https://app.dimensions.ai/details/publication/pub.1033883421"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13102_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10295-005-0206-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10295-005-0206-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10295-005-0206-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10295-005-0206-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10295-005-0206-5'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      61 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10295-005-0206-5 schema:about N3c32b2b6f69e4e3ba476c7ef3bd2f87d
2 N417ac728a05a48b6b7babac01be01dc8
3 N4b984402691e48e495a063f653683be7
4 N5a84587685a94ec0b9098897e3e6420d
5 N722ec55e72ee4fab8d1bba5430c506b3
6 N7db5ab32edef4f48b8a8ad639255b013
7 N82bea2e35c064820af8f8bdb8dd53c82
8 Na7dc238cfbf0467eb1e4b7de21a97e79
9 Nbfc762820326441c8c42dae23b1179db
10 Nd1f2822f12504bd5b484778dab30da4b
11 Ne35c93b623f74d2c9defe8169fed5029
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Nb9ba83e569ea4c1b8d4bc1521a0d5757
15 schema:citation sg:pub.10.1007/bf01023351
16 sg:pub.10.1007/bf02920202
17 sg:pub.10.1007/s00253-001-0899-y
18 sg:pub.10.1007/s002530051431
19 sg:pub.10.1023/b:bile.0000015925.52287.1f
20 https://app.dimensions.ai/details/publication/pub.1076833526
21 https://app.dimensions.ai/details/publication/pub.1081693529
22 https://app.dimensions.ai/details/publication/pub.1082887369
23 https://app.dimensions.ai/details/publication/pub.1083113238
24 https://doi.org/10.1006/mben.1998.0111
25 https://doi.org/10.1006/mben.2001.0220
26 https://doi.org/10.1016/0005-2744(80)90176-x
27 https://doi.org/10.1021/bp990095c
28 https://doi.org/10.1093/oxfordjournals.jbchem.a123350
29 https://doi.org/10.1093/oxfordjournals.jbchem.a124909
30 https://doi.org/10.1093/oxfordjournals.jbchem.a132349
31 https://doi.org/10.1099/00221287-138-4-685
32 https://doi.org/10.1099/00221287-143-1-187
33 https://doi.org/10.1099/00221287-144-5-1423
34 https://doi.org/10.1111/j.1432-1033.1997.t01-1-00452.x
35 https://doi.org/10.1128/aem.67.1.148-154.2001
36 schema:datePublished 2005-03
37 schema:datePublishedReg 2005-03-01
38 schema:description In mixed-acid fermentation, succinate synthesis requires one mole of phosphoenolpyruvate (PEP), one mole of CO2, and two moles of NADH for every mole of succinate to be formed. Different carbon sources with different properties were used to address these requirements. Sorbitol generates one more mole of NADH than glucose. Fermentation of sorbitol was shown in this study (and by others) to produce significantly more succinate than fermentation of glucose, due to increased NADH availability. Xylose fermentation conserves the intracellular PEP pool, since its transport does not require the phosphotransferase system normally used for glucose transport. The extra PEP can then be assimilated in the succinate pathway to improve production. In this study, fermentation of xylose did yield higher succinate production than glucose fermentation. Subsequent inactivation of the acetate and lactate pathways was performed to study metabolite redistribution and the effect on succinate production. With the acetate pathway inactivated, significant carbon flux shifted toward lactate rather than succinate. When both acetate and lactate pathways were inactivated, succinate yield ultimately increased with a concomitant increase in ethanol yield.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf Nbbf0493527024fe0b249525374f37b86
43 Nf0cf6050000641ca80917b46d8947744
44 sg:journal.1096599
45 schema:name Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli
46 schema:pagination 87-93
47 schema:productId N46d7d5b70b5b4738bb62278f5fe21179
48 N4c3548a76df3453794298794a55eec5c
49 N745d5cdb2dde47dba0b0986f5472790e
50 N942e4c7f163743b09616f9a420e4dc98
51 Na71792ec6db3413289f2cf9fa2d71448
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033883421
53 https://doi.org/10.1007/s10295-005-0206-5
54 schema:sdDatePublished 2019-04-11T14:32
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nab35f217b56743d0ba3b4e4e87825856
57 schema:url http://link.springer.com/10.1007/s10295-005-0206-5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N3c32b2b6f69e4e3ba476c7ef3bd2f87d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Lactic Acid
63 rdf:type schema:DefinedTerm
64 N417ac728a05a48b6b7babac01be01dc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Glucose
66 rdf:type schema:DefinedTerm
67 N46d7d5b70b5b4738bb62278f5fe21179 schema:name readcube_id
68 schema:value a16975ab184b762e70c404894d6f92a81e63e045eed41395366e2823de949a2a
69 rdf:type schema:PropertyValue
70 N4b984402691e48e495a063f653683be7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Sorbitol
72 rdf:type schema:DefinedTerm
73 N4c3548a76df3453794298794a55eec5c schema:name nlm_unique_id
74 schema:value 9705544
75 rdf:type schema:PropertyValue
76 N5a84587685a94ec0b9098897e3e6420d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Biotechnology
78 rdf:type schema:DefinedTerm
79 N722ec55e72ee4fab8d1bba5430c506b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Xylose
81 rdf:type schema:DefinedTerm
82 N745d5cdb2dde47dba0b0986f5472790e schema:name doi
83 schema:value 10.1007/s10295-005-0206-5
84 rdf:type schema:PropertyValue
85 N7db5ab32edef4f48b8a8ad639255b013 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Oxidation-Reduction
87 rdf:type schema:DefinedTerm
88 N82bea2e35c064820af8f8bdb8dd53c82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Fermentation
90 rdf:type schema:DefinedTerm
91 N942e4c7f163743b09616f9a420e4dc98 schema:name dimensions_id
92 schema:value pub.1033883421
93 rdf:type schema:PropertyValue
94 Na71792ec6db3413289f2cf9fa2d71448 schema:name pubmed_id
95 schema:value 15770511
96 rdf:type schema:PropertyValue
97 Na7dc238cfbf0467eb1e4b7de21a97e79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Succinic Acid
99 rdf:type schema:DefinedTerm
100 Nab35f217b56743d0ba3b4e4e87825856 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nb092b4d5faa949baa435bfbd9b9c4e2b rdf:first sg:person.0703420315.35
103 rdf:rest Nd1cf56a4a7aa4d0c9e44d406cde323bf
104 Nb9ba83e569ea4c1b8d4bc1521a0d5757 rdf:first sg:person.01214115720.87
105 rdf:rest Nb092b4d5faa949baa435bfbd9b9c4e2b
106 Nbbf0493527024fe0b249525374f37b86 schema:volumeNumber 32
107 rdf:type schema:PublicationVolume
108 Nbfc762820326441c8c42dae23b1179db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Carbon
110 rdf:type schema:DefinedTerm
111 Nd1cf56a4a7aa4d0c9e44d406cde323bf rdf:first sg:person.0671627317.45
112 rdf:rest rdf:nil
113 Nd1f2822f12504bd5b484778dab30da4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Acetates
115 rdf:type schema:DefinedTerm
116 Ne35c93b623f74d2c9defe8169fed5029 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Escherichia coli
118 rdf:type schema:DefinedTerm
119 Nf0cf6050000641ca80917b46d8947744 schema:issueNumber 3
120 rdf:type schema:PublicationIssue
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biochemistry and Cell Biology
126 rdf:type schema:DefinedTerm
127 sg:grant.3006003 http://pending.schema.org/fundedItem sg:pub.10.1007/s10295-005-0206-5
128 rdf:type schema:MonetaryGrant
129 sg:grant.3019651 http://pending.schema.org/fundedItem sg:pub.10.1007/s10295-005-0206-5
130 rdf:type schema:MonetaryGrant
131 sg:grant.3030831 http://pending.schema.org/fundedItem sg:pub.10.1007/s10295-005-0206-5
132 rdf:type schema:MonetaryGrant
133 sg:journal.1096599 schema:issn 1367-5435
134 1476-5535
135 schema:name Journal of Industrial Microbiology & Biotechnology
136 rdf:type schema:Periodical
137 sg:person.01214115720.87 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
138 schema:familyName Lin
139 schema:givenName Henry
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214115720.87
141 rdf:type schema:Person
142 sg:person.0671627317.45 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
143 schema:familyName San
144 schema:givenName Ka-Yiu
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671627317.45
146 rdf:type schema:Person
147 sg:person.0703420315.35 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
148 schema:familyName Bennett
149 schema:givenName George N.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703420315.35
151 rdf:type schema:Person
152 sg:pub.10.1007/bf01023351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011670367
153 https://doi.org/10.1007/bf01023351
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/bf02920202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020502559
156 https://doi.org/10.1007/bf02920202
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s00253-001-0899-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037208698
159 https://doi.org/10.1007/s00253-001-0899-y
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s002530051431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036378299
162 https://doi.org/10.1007/s002530051431
163 rdf:type schema:CreativeWork
164 sg:pub.10.1023/b:bile.0000015925.52287.1f schema:sameAs https://app.dimensions.ai/details/publication/pub.1041787814
165 https://doi.org/10.1023/b:bile.0000015925.52287.1f
166 rdf:type schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1076833526 schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1081693529 schema:CreativeWork
169 https://app.dimensions.ai/details/publication/pub.1082887369 schema:CreativeWork
170 https://app.dimensions.ai/details/publication/pub.1083113238 schema:CreativeWork
171 https://doi.org/10.1006/mben.1998.0111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000305639
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1006/mben.2001.0220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050017334
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/0005-2744(80)90176-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044726072
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/bp990095c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038520471
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/oxfordjournals.jbchem.a123350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078049714
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/oxfordjournals.jbchem.a124909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082852472
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/oxfordjournals.jbchem.a132349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079905404
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1099/00221287-138-4-685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060368337
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1099/00221287-143-1-187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030708057
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1099/00221287-144-5-1423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060369867
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.1432-1033.1997.t01-1-00452.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029917322
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1128/aem.67.1.148-154.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028613730
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.21940.3e schema:alternateName Rice University
196 schema:name Department of Biochemistry and Cell Biology MS 140, Rice University, P.O. Box 1892, 77251-1892, Houston, Texas, USA
197 Department of Bioengineering MS 142, Rice University, PO Box 1892, 77251-1892, Houston, Texas, USA
198 Department of Chemical Engineering, Rice University, Houston, Texas, USA
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...