Robust combination of IGS analysis center GLONASS clocks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

Kangkang Chen, Tianhe Xu, Yuanxi Yang

ABSTRACT

The International GNSS Service (IGS) Analysis Centers (ACs) generate precise GNSS products by integrating tracking data from globally distributed IGS stations. The ACs’ products are further processed and combined for the positioning, navigation and timing users. We propose a robust least squares estimation for combining GLONASS clock products. Besides the difference in clock reference, systematic errors exist in the clock differences between different ACs, which show a linear trend and are completely removed. The clock combinations utilizing the final, rapid and ultra-rapid products of the IGS ACs were implemented in this study. The results of clock validation show that the agreement and stability of the newly generated combination products are better than those of most ACs. Furthermore, the impact of the different clock combination products on precise point positioning (PPP) is analyzed. Compared to the results of PPP using the products generated by the traditional combination strategy, the repeatability of GLONASS static PPP using the new clock combinations is 2.31, 2.95, and 5.62 mm, an improvement by 26.7, 28.9 and 20.6% in N, E and U respectively. The average RMS of GLONASS kinematic PPP using the new clock combinations is 1.20, 1.47 and 3.01 cm, an improvement by 67.5, 71.9 and 70.3% in N, E and U respectively. The improvement of the proposed strategy on PPP results is significant. More... »

PAGES

1251-1263

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10291-017-0610-0

DOI

http://dx.doi.org/10.1007/s10291-017-0610-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083901123


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "College of Geology Engineering and Geomatics, Chang\u2019an University, 710054, Xi\u2019an, Shaanxi, China", 
            "Institute of Geodesy and Photogrammetry, ETH Zurich, Robert-Gnehm-Weg 15, 8093, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Kangkang", 
        "id": "sg:person.016551505771.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551505771.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong University", 
          "id": "https://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "Institute of Space Science, Shandong University, 264209, Weihai, Shandong, China", 
            "State Key Laboratory of Geo-information Engineering, 710054, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Tianhe", 
        "id": "sg:person.015636155053.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636155053.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Surveying and Mapping", 
          "id": "https://www.grid.ac/institutes/grid.464302.7", 
          "name": [
            "State Key Laboratory of Geo-information Engineering, 710054, Xi\u2019an, Shaanxi, China", 
            "Xi\u2019an Research Institute of Surveying and Mapping, 710054, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yuanxi", 
        "id": "sg:person.012035143437.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012035143437.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/pl00012755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003801422", 
          "https://doi.org/10.1007/pl00012755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geog.2016.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007393823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004gl022224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010062162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gl023473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010736958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gl023473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010736958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-015-0862-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014939309", 
          "https://doi.org/10.1007/s00190-015-0862-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-006-0051-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023469277", 
          "https://doi.org/10.1007/s10291-006-0051-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-006-0051-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023469277", 
          "https://doi.org/10.1007/s10291-006-0051-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-008-0300-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029782426", 
          "https://doi.org/10.1007/s00190-008-0300-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-008-0300-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029782426", 
          "https://doi.org/10.1007/s00190-008-0300-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900050252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029878948", 
          "https://doi.org/10.1007/s001900050252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00012863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033398262", 
          "https://doi.org/10.1007/pl00012863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-46635-3_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040230413", 
          "https://doi.org/10.1007/978-3-662-46635-3_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-005-0134-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041305106", 
          "https://doi.org/10.1007/s10291-005-0134-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-005-0134-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041305106", 
          "https://doi.org/10.1007/s10291-005-0134-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2014.06.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047478467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2010.2051951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061611507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tuffc.2003.1209545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061808068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/freq.2001.956188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095278081"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "The International GNSS Service (IGS) Analysis Centers (ACs) generate precise GNSS products by integrating tracking data from globally distributed IGS stations. The ACs\u2019 products are further processed and combined for the positioning, navigation and timing users. We propose a robust least squares estimation for combining GLONASS clock products. Besides the difference in clock reference, systematic errors exist in the clock differences between different ACs, which show a linear trend and are completely removed. The clock combinations utilizing the final, rapid and ultra-rapid products of the IGS ACs were implemented in this study. The results of clock validation show that the agreement and stability of the newly generated combination products are better than those of most ACs. Furthermore, the impact of the different clock combination products on precise point positioning (PPP) is analyzed. Compared to the results of PPP using the products generated by the traditional combination strategy, the repeatability of GLONASS static PPP using the new clock combinations is 2.31, 2.95, and 5.62 mm, an improvement by 26.7, 28.9 and 20.6% in N, E and U respectively. The average RMS of GLONASS kinematic PPP using the new clock combinations is 1.20, 1.47 and 3.01 cm, an improvement by 67.5, 71.9 and 70.3% in N, E and U respectively. The improvement of the proposed strategy on PPP results is significant.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10291-017-0610-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7022146", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136132", 
        "issn": [
          "1080-5370", 
          "1521-1886"
        ], 
        "name": "GPS Solutions", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Robust combination of IGS analysis center GLONASS clocks", 
    "pagination": "1251-1263", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a6af3328d6c0335f5dcaf08d0a39cf91adaab984e6052733553d2e4d3c52c2eb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10291-017-0610-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083901123"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10291-017-0610-0", 
      "https://app.dimensions.ai/details/publication/pub.1083901123"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54322_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10291-017-0610-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10291-017-0610-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10291-017-0610-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10291-017-0610-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10291-017-0610-0'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10291-017-0610-0 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N18a53ebe687a489eb32de9882e11b443
4 schema:citation sg:pub.10.1007/978-3-662-46635-3_36
5 sg:pub.10.1007/pl00012755
6 sg:pub.10.1007/pl00012863
7 sg:pub.10.1007/s00190-008-0300-3
8 sg:pub.10.1007/s00190-015-0862-9
9 sg:pub.10.1007/s001900050252
10 sg:pub.10.1007/s10291-005-0134-x
11 sg:pub.10.1007/s10291-006-0051-7
12 https://doi.org/10.1016/j.asr.2014.06.030
13 https://doi.org/10.1016/j.geog.2016.04.004
14 https://doi.org/10.1029/2004gl022224
15 https://doi.org/10.1029/2005gl023473
16 https://doi.org/10.1109/freq.2001.956188
17 https://doi.org/10.1109/tgrs.2010.2051951
18 https://doi.org/10.1109/tuffc.2003.1209545
19 schema:datePublished 2017-07
20 schema:datePublishedReg 2017-07-01
21 schema:description The International GNSS Service (IGS) Analysis Centers (ACs) generate precise GNSS products by integrating tracking data from globally distributed IGS stations. The ACs’ products are further processed and combined for the positioning, navigation and timing users. We propose a robust least squares estimation for combining GLONASS clock products. Besides the difference in clock reference, systematic errors exist in the clock differences between different ACs, which show a linear trend and are completely removed. The clock combinations utilizing the final, rapid and ultra-rapid products of the IGS ACs were implemented in this study. The results of clock validation show that the agreement and stability of the newly generated combination products are better than those of most ACs. Furthermore, the impact of the different clock combination products on precise point positioning (PPP) is analyzed. Compared to the results of PPP using the products generated by the traditional combination strategy, the repeatability of GLONASS static PPP using the new clock combinations is 2.31, 2.95, and 5.62 mm, an improvement by 26.7, 28.9 and 20.6% in N, E and U respectively. The average RMS of GLONASS kinematic PPP using the new clock combinations is 1.20, 1.47 and 3.01 cm, an improvement by 67.5, 71.9 and 70.3% in N, E and U respectively. The improvement of the proposed strategy on PPP results is significant.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N92df19f764ed4ed99973d89fbbae203f
26 Ned2d735cb44647278a30643515881c72
27 sg:journal.1136132
28 schema:name Robust combination of IGS analysis center GLONASS clocks
29 schema:pagination 1251-1263
30 schema:productId N39dc7753059d4f168179533033c87f24
31 Na12fab5e9dec4a54b3bae0c3de10837b
32 Nf798e215b4fe411e9ac9ba2c1061bd80
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083901123
34 https://doi.org/10.1007/s10291-017-0610-0
35 schema:sdDatePublished 2019-04-11T10:19
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N3587ba51d4f64c6d90883726982c6210
38 schema:url https://link.springer.com/10.1007%2Fs10291-017-0610-0
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N18a53ebe687a489eb32de9882e11b443 rdf:first sg:person.016551505771.59
43 rdf:rest Nee356035826b4d51919f1766b89049c1
44 N3587ba51d4f64c6d90883726982c6210 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N38d472c432f9476599650d34a507ad7f rdf:first sg:person.012035143437.67
47 rdf:rest rdf:nil
48 N39dc7753059d4f168179533033c87f24 schema:name dimensions_id
49 schema:value pub.1083901123
50 rdf:type schema:PropertyValue
51 N92df19f764ed4ed99973d89fbbae203f schema:issueNumber 3
52 rdf:type schema:PublicationIssue
53 Na12fab5e9dec4a54b3bae0c3de10837b schema:name readcube_id
54 schema:value a6af3328d6c0335f5dcaf08d0a39cf91adaab984e6052733553d2e4d3c52c2eb
55 rdf:type schema:PropertyValue
56 Ned2d735cb44647278a30643515881c72 schema:volumeNumber 21
57 rdf:type schema:PublicationVolume
58 Nee356035826b4d51919f1766b89049c1 rdf:first sg:person.015636155053.81
59 rdf:rest N38d472c432f9476599650d34a507ad7f
60 Nf798e215b4fe411e9ac9ba2c1061bd80 schema:name doi
61 schema:value 10.1007/s10291-017-0610-0
62 rdf:type schema:PropertyValue
63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
64 schema:name Engineering
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
67 schema:name Geomatic Engineering
68 rdf:type schema:DefinedTerm
69 sg:grant.7022146 http://pending.schema.org/fundedItem sg:pub.10.1007/s10291-017-0610-0
70 rdf:type schema:MonetaryGrant
71 sg:journal.1136132 schema:issn 1080-5370
72 1521-1886
73 schema:name GPS Solutions
74 rdf:type schema:Periodical
75 sg:person.012035143437.67 schema:affiliation https://www.grid.ac/institutes/grid.464302.7
76 schema:familyName Yang
77 schema:givenName Yuanxi
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012035143437.67
79 rdf:type schema:Person
80 sg:person.015636155053.81 schema:affiliation https://www.grid.ac/institutes/grid.27255.37
81 schema:familyName Xu
82 schema:givenName Tianhe
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636155053.81
84 rdf:type schema:Person
85 sg:person.016551505771.59 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
86 schema:familyName Chen
87 schema:givenName Kangkang
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551505771.59
89 rdf:type schema:Person
90 sg:pub.10.1007/978-3-662-46635-3_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040230413
91 https://doi.org/10.1007/978-3-662-46635-3_36
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/pl00012755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003801422
94 https://doi.org/10.1007/pl00012755
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/pl00012863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033398262
97 https://doi.org/10.1007/pl00012863
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00190-008-0300-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029782426
100 https://doi.org/10.1007/s00190-008-0300-3
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00190-015-0862-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014939309
103 https://doi.org/10.1007/s00190-015-0862-9
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s001900050252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029878948
106 https://doi.org/10.1007/s001900050252
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10291-005-0134-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041305106
109 https://doi.org/10.1007/s10291-005-0134-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10291-006-0051-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023469277
112 https://doi.org/10.1007/s10291-006-0051-7
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.asr.2014.06.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047478467
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.geog.2016.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007393823
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1029/2004gl022224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010062162
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1029/2005gl023473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010736958
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/freq.2001.956188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095278081
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/tgrs.2010.2051951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611507
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/tuffc.2003.1209545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061808068
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.27255.37 schema:alternateName Shandong University
129 schema:name Institute of Space Science, Shandong University, 264209, Weihai, Shandong, China
130 State Key Laboratory of Geo-information Engineering, 710054, Xi’an, Shaanxi, China
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.464302.7 schema:alternateName Chinese Academy of Surveying and Mapping
133 schema:name State Key Laboratory of Geo-information Engineering, 710054, Xi’an, Shaanxi, China
134 Xi’an Research Institute of Surveying and Mapping, 710054, Xi’an, Shaanxi, China
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
137 schema:name College of Geology Engineering and Geomatics, Chang’an University, 710054, Xi’an, Shaanxi, China
138 Institute of Geodesy and Photogrammetry, ETH Zurich, Robert-Gnehm-Weg 15, 8093, Zurich, Switzerland
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...