Error analysis of the 3D similarity coordinate transformation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

Guobin Chang, Tianhe Xu, Qianxin Wang

ABSTRACT

The 3D similarity coordinate transformation with the Gauss–Helmert error model is investigated. The first-order error analysis of an analytical least-squares solution to this problem is developed in detail. While additive errors are assumed in the translation and scale estimates, a 3 × 1 multiplicative error vector is defined to effectively parameterize the rotation matrix estimation error. The propagation of the errors in the coordinate measurements to the errors in the estimated transformation parameters is derived step-by-step, and the formulae for calculating the variance–covariance matrix of the estimated parameters are presented. More... »

PAGES

963-971

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10291-016-0585-2

DOI

http://dx.doi.org/10.1007/s10291-016-0585-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043270459


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Surveying and Mapping", 
          "id": "https://www.grid.ac/institutes/grid.464302.7", 
          "name": [
            "School of Environmental Science and Spatial Informatics, China University of Mining and Technology, 221116, Xuzhou, China", 
            "State Key Laboratory of Geo-information Engineering, Xi\u2019an Research Institute of Surveying and Mapping, 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Guobin", 
        "id": "sg:person.013156413714.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013156413714.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Surveying and Mapping", 
          "id": "https://www.grid.ac/institutes/grid.464302.7", 
          "name": [
            "Institute of Space Science, Shandong University, 264209, Weihai, China", 
            "State Key Laboratory of Geo-information Engineering, Xi\u2019an Research Institute of Surveying and Mapping, 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Tianhe", 
        "id": "sg:person.015636155053.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636155053.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Surveying and Mapping", 
          "id": "https://www.grid.ac/institutes/grid.464302.7", 
          "name": [
            "School of Environmental Science and Spatial Informatics, China University of Mining and Technology, 221116, Xuzhou, China", 
            "State Key Laboratory of Geo-information Engineering, Xi\u2019an Research Institute of Surveying and Mapping, 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qianxin", 
        "id": "sg:person.015677045675.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677045675.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40328-015-0123-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002081865", 
          "https://doi.org/10.1007/s40328-015-0123-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-016-0521-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003024270", 
          "https://doi.org/10.1007/s10291-016-0521-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-012-0552-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023773", 
          "https://doi.org/10.1007/s00190-012-0552-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00867152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015302325", 
          "https://doi.org/10.1007/bf00867152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02520475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028882016", 
          "https://doi.org/10.1007/bf02520475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-012-0255-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029352610", 
          "https://doi.org/10.1007/s10291-012-0255-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-007-0157-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032586308", 
          "https://doi.org/10.1007/s00190-007-0157-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-007-0157-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032586308", 
          "https://doi.org/10.1007/s00190-007-0157-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-011-0248-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033836097", 
          "https://doi.org/10.1007/s10291-011-0248-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-015-0799-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041203560", 
          "https://doi.org/10.1007/s00190-015-0799-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-014-0747-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044488056", 
          "https://doi.org/10.1007/s00190-014-0747-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2006.875389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061800087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0717073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852714"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "The 3D similarity coordinate transformation with the Gauss\u2013Helmert error model is investigated. The first-order error analysis of an analytical least-squares solution to this problem is developed in detail. While additive errors are assumed in the translation and scale estimates, a 3 \u00d7 1 multiplicative error vector is defined to effectively parameterize the rotation matrix estimation error. The propagation of the errors in the coordinate measurements to the errors in the estimated transformation parameters is derived step-by-step, and the formulae for calculating the variance\u2013covariance matrix of the estimated parameters are presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10291-016-0585-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136132", 
        "issn": [
          "1080-5370", 
          "1521-1886"
        ], 
        "name": "GPS Solutions", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Error analysis of the 3D similarity coordinate transformation", 
    "pagination": "963-971", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ce1c9ca768282930905cde1d995b7544e0fd3ce244a33361ed8b0ec0631693ba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10291-016-0585-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043270459"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10291-016-0585-2", 
      "https://app.dimensions.ai/details/publication/pub.1043270459"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70056_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10291-016-0585-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10291-016-0585-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10291-016-0585-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10291-016-0585-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10291-016-0585-2'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10291-016-0585-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8f1887ed9ad5433c94df5d2c3baf5f26
4 schema:citation sg:pub.10.1007/bf00867152
5 sg:pub.10.1007/bf02520475
6 sg:pub.10.1007/s00190-007-0157-x
7 sg:pub.10.1007/s00190-012-0552-9
8 sg:pub.10.1007/s00190-014-0747-3
9 sg:pub.10.1007/s00190-015-0799-z
10 sg:pub.10.1007/s10291-011-0248-2
11 sg:pub.10.1007/s10291-012-0255-y
12 sg:pub.10.1007/s10291-016-0521-5
13 sg:pub.10.1007/s40328-015-0123-7
14 https://doi.org/10.1109/tpami.2005.29
15 https://doi.org/10.1109/tsp.2006.875389
16 https://doi.org/10.1137/0717073
17 schema:datePublished 2017-07
18 schema:datePublishedReg 2017-07-01
19 schema:description The 3D similarity coordinate transformation with the Gauss–Helmert error model is investigated. The first-order error analysis of an analytical least-squares solution to this problem is developed in detail. While additive errors are assumed in the translation and scale estimates, a 3 × 1 multiplicative error vector is defined to effectively parameterize the rotation matrix estimation error. The propagation of the errors in the coordinate measurements to the errors in the estimated transformation parameters is derived step-by-step, and the formulae for calculating the variance–covariance matrix of the estimated parameters are presented.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N4b715e9f2ddd44b18feeba40c33caa71
24 N7041046e8a3f4b4992034062b6b30eeb
25 sg:journal.1136132
26 schema:name Error analysis of the 3D similarity coordinate transformation
27 schema:pagination 963-971
28 schema:productId N11d9489173324f419dc61b8b658af0d7
29 N8d5ee1b43e6c40cfb8e13104156fc31a
30 Ne6fd09fd905148979cd685470d4bfb08
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043270459
32 https://doi.org/10.1007/s10291-016-0585-2
33 schema:sdDatePublished 2019-04-11T12:41
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Naaa2a0d2b6e04d9b8cce889342ea1396
36 schema:url https://link.springer.com/10.1007%2Fs10291-016-0585-2
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N11d9489173324f419dc61b8b658af0d7 schema:name readcube_id
41 schema:value ce1c9ca768282930905cde1d995b7544e0fd3ce244a33361ed8b0ec0631693ba
42 rdf:type schema:PropertyValue
43 N4b715e9f2ddd44b18feeba40c33caa71 schema:volumeNumber 21
44 rdf:type schema:PublicationVolume
45 N51aaf2caa7d74f208ecc0aee501bb27c rdf:first sg:person.015677045675.89
46 rdf:rest rdf:nil
47 N7041046e8a3f4b4992034062b6b30eeb schema:issueNumber 3
48 rdf:type schema:PublicationIssue
49 N86c12b3a91dc40f3957f144073828c5a rdf:first sg:person.015636155053.81
50 rdf:rest N51aaf2caa7d74f208ecc0aee501bb27c
51 N8d5ee1b43e6c40cfb8e13104156fc31a schema:name dimensions_id
52 schema:value pub.1043270459
53 rdf:type schema:PropertyValue
54 N8f1887ed9ad5433c94df5d2c3baf5f26 rdf:first sg:person.013156413714.88
55 rdf:rest N86c12b3a91dc40f3957f144073828c5a
56 Naaa2a0d2b6e04d9b8cce889342ea1396 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Ne6fd09fd905148979cd685470d4bfb08 schema:name doi
59 schema:value 10.1007/s10291-016-0585-2
60 rdf:type schema:PropertyValue
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 sg:journal.1136132 schema:issn 1080-5370
68 1521-1886
69 schema:name GPS Solutions
70 rdf:type schema:Periodical
71 sg:person.013156413714.88 schema:affiliation https://www.grid.ac/institutes/grid.464302.7
72 schema:familyName Chang
73 schema:givenName Guobin
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013156413714.88
75 rdf:type schema:Person
76 sg:person.015636155053.81 schema:affiliation https://www.grid.ac/institutes/grid.464302.7
77 schema:familyName Xu
78 schema:givenName Tianhe
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636155053.81
80 rdf:type schema:Person
81 sg:person.015677045675.89 schema:affiliation https://www.grid.ac/institutes/grid.464302.7
82 schema:familyName Wang
83 schema:givenName Qianxin
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677045675.89
85 rdf:type schema:Person
86 sg:pub.10.1007/bf00867152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015302325
87 https://doi.org/10.1007/bf00867152
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf02520475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028882016
90 https://doi.org/10.1007/bf02520475
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s00190-007-0157-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032586308
93 https://doi.org/10.1007/s00190-007-0157-x
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s00190-012-0552-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023773
96 https://doi.org/10.1007/s00190-012-0552-9
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s00190-014-0747-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044488056
99 https://doi.org/10.1007/s00190-014-0747-3
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s00190-015-0799-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041203560
102 https://doi.org/10.1007/s00190-015-0799-z
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10291-011-0248-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033836097
105 https://doi.org/10.1007/s10291-011-0248-2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10291-012-0255-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029352610
108 https://doi.org/10.1007/s10291-012-0255-y
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10291-016-0521-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003024270
111 https://doi.org/10.1007/s10291-016-0521-5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s40328-015-0123-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002081865
114 https://doi.org/10.1007/s40328-015-0123-7
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tpami.2005.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742894
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tsp.2006.875389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800087
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1137/0717073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852714
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.464302.7 schema:alternateName Chinese Academy of Surveying and Mapping
123 schema:name Institute of Space Science, Shandong University, 264209, Weihai, China
124 School of Environmental Science and Spatial Informatics, China University of Mining and Technology, 221116, Xuzhou, China
125 State Key Laboratory of Geo-information Engineering, Xi’an Research Institute of Surveying and Mapping, 710054, Xi’an, China
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...