Big data analytics: an aid to detection of non-technical losses in power utilities View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Giovanni Micheli, Emiliano Soda, Maria Teresa Vespucci, Marco Gobbi, Alessandro Bertani

ABSTRACT

The great amount of data collected by the Advanced Metering Infrastructure can help electric utilities to detect energy theft, a phenomenon that globally costs over 25 billions of dollars per year. To address this challenge, this paper describes a new approach to non-technical loss analysis in power utilities using a variant of the P2P computing that allows identifying frauds in the absence of total reachability of smart meters. Specifically, the proposed approach compares data recorded by the smart meters and by the collector in the same neighborhood area and detects the fraudulent customers through the application of a Multiple Linear Regression model. Using real utility data, the regression model has been compared with other data mining techniques such as SVM, neural networks and logistic regression, in order to validate the proposed approach. The empirical results show that the Multiple Linear Regression model can efficiently identify the energy thieves even in areas with problems of meters reachability. More... »

PAGES

329-343

References to SciGraph publications

  • 2012. Evaluating Electricity Theft Detectors in Smart Grid Networks in RESEARCH IN ATTACKS, INTRUSIONS, AND DEFENSES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10287-018-0325-x

    DOI

    http://dx.doi.org/10.1007/s10287-018-0325-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105046027


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Bergamo", 
              "id": "https://www.grid.ac/institutes/grid.33236.37", 
              "name": [
                "Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Micheli", 
            "givenName": "Giovanni", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centro Elettrotecnico Sperimentale Italiano (Italy)", 
              "id": "https://www.grid.ac/institutes/grid.423950.9", 
              "name": [
                "CESI, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soda", 
            "givenName": "Emiliano", 
            "id": "sg:person.011310567477.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011310567477.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bergamo", 
              "id": "https://www.grid.ac/institutes/grid.33236.37", 
              "name": [
                "Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vespucci", 
            "givenName": "Maria Teresa", 
            "id": "sg:person.015336524606.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015336524606.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centro Elettrotecnico Sperimentale Italiano (Italy)", 
              "id": "https://www.grid.ac/institutes/grid.423950.9", 
              "name": [
                "CESI, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gobbi", 
            "givenName": "Marco", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centro Elettrotecnico Sperimentale Italiano (Italy)", 
              "id": "https://www.grid.ac/institutes/grid.423950.9", 
              "name": [
                "CESI, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bertani", 
            "givenName": "Alessandro", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1109/tst.2014.6787363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027272848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33338-5_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047752814", 
              "https://doi.org/10.1007/978-3-642-33338-5_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijepes.2012.10.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048256924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsac.2013.sup.0513023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061318354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msp.2009.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061423252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpwrd.2010.2055670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061773480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpwrd.2011.2161621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061773758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpwrd.2011.2161621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061773758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpwrd.2011.2161621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061773758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tencon.2008.4766403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093190001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iwies.2013.6698559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093549780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ijcnn.2009.5178985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094399800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/psce.2011.5772466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094485856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/secon.2012.6275834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094748717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/naps.2012.6336366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095561459"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "The great amount of data collected by the Advanced Metering Infrastructure can help electric utilities to detect energy theft, a phenomenon that globally costs over 25 billions of dollars per year. To address this challenge, this paper describes a new approach to non-technical loss analysis in power utilities using a variant of the P2P computing that allows identifying frauds in the absence of total reachability of smart meters. Specifically, the proposed approach compares data recorded by the smart meters and by the collector in the same neighborhood area and detects the fraudulent customers through the application of a Multiple Linear Regression model. Using real utility data, the regression model has been compared with other data mining techniques such as SVM, neural networks and logistic regression, in order to validate the proposed approach. The empirical results show that the Multiple Linear Regression model can efficiently identify the energy thieves even in areas with problems of meters reachability.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10287-018-0325-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136802", 
            "issn": [
              "1619-697X", 
              "1619-6988"
            ], 
            "name": "Computational Management Science", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Big data analytics: an aid to detection of non-technical losses in power utilities", 
        "pagination": "329-343", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aa70a723b8641bf59ec92819b1cf66f9e55f6b4248f60d809923ecb13b40cc95"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10287-018-0325-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105046027"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10287-018-0325-x", 
          "https://app.dimensions.ai/details/publication/pub.1105046027"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10287-018-0325-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10287-018-0325-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10287-018-0325-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10287-018-0325-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10287-018-0325-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    129 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10287-018-0325-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N843b1287a78f4caea969218266cc2e86
    4 schema:citation sg:pub.10.1007/978-3-642-33338-5_11
    5 https://doi.org/10.1016/j.ijepes.2012.10.031
    6 https://doi.org/10.1109/ijcnn.2009.5178985
    7 https://doi.org/10.1109/iwies.2013.6698559
    8 https://doi.org/10.1109/jsac.2013.sup.0513023
    9 https://doi.org/10.1109/msp.2009.76
    10 https://doi.org/10.1109/naps.2012.6336366
    11 https://doi.org/10.1109/psce.2011.5772466
    12 https://doi.org/10.1109/secon.2012.6275834
    13 https://doi.org/10.1109/tencon.2008.4766403
    14 https://doi.org/10.1109/tpwrd.2010.2055670
    15 https://doi.org/10.1109/tpwrd.2011.2161621
    16 https://doi.org/10.1109/tst.2014.6787363
    17 schema:datePublished 2019-02
    18 schema:datePublishedReg 2019-02-01
    19 schema:description The great amount of data collected by the Advanced Metering Infrastructure can help electric utilities to detect energy theft, a phenomenon that globally costs over 25 billions of dollars per year. To address this challenge, this paper describes a new approach to non-technical loss analysis in power utilities using a variant of the P2P computing that allows identifying frauds in the absence of total reachability of smart meters. Specifically, the proposed approach compares data recorded by the smart meters and by the collector in the same neighborhood area and detects the fraudulent customers through the application of a Multiple Linear Regression model. Using real utility data, the regression model has been compared with other data mining techniques such as SVM, neural networks and logistic regression, in order to validate the proposed approach. The empirical results show that the Multiple Linear Regression model can efficiently identify the energy thieves even in areas with problems of meters reachability.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N99349312cbbc4e248ca3a6c4751ba97c
    24 Nea8495bb616345208107d69e0bfd7f86
    25 sg:journal.1136802
    26 schema:name Big data analytics: an aid to detection of non-technical losses in power utilities
    27 schema:pagination 329-343
    28 schema:productId N1492fda96e614820819de89ef45e8fd3
    29 Ncdbbb5388d8b4530a108a0778acae2d8
    30 Nfdd8f533583d42c4ba0d43157ce64df6
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105046027
    32 https://doi.org/10.1007/s10287-018-0325-x
    33 schema:sdDatePublished 2019-04-11T13:47
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nc801626ba0514d719a03d077c4ee7ed7
    36 schema:url https://link.springer.com/10.1007%2Fs10287-018-0325-x
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N143774c760d9412ea80f1241d7efe0db schema:affiliation https://www.grid.ac/institutes/grid.423950.9
    41 schema:familyName Bertani
    42 schema:givenName Alessandro
    43 rdf:type schema:Person
    44 N1492fda96e614820819de89ef45e8fd3 schema:name doi
    45 schema:value 10.1007/s10287-018-0325-x
    46 rdf:type schema:PropertyValue
    47 N1d9951d0620542ad99923aec53e8295e rdf:first Nf737ab4f2f724f468b2235fef708e2c9
    48 rdf:rest N3d03eef997494cbfae4bf122e4891291
    49 N34dc05f35040465da8d649866945ccc0 schema:affiliation https://www.grid.ac/institutes/grid.33236.37
    50 schema:familyName Micheli
    51 schema:givenName Giovanni
    52 rdf:type schema:Person
    53 N3d03eef997494cbfae4bf122e4891291 rdf:first N143774c760d9412ea80f1241d7efe0db
    54 rdf:rest rdf:nil
    55 N81f5fc700edd48f0835389e61f0be223 rdf:first sg:person.015336524606.59
    56 rdf:rest N1d9951d0620542ad99923aec53e8295e
    57 N843b1287a78f4caea969218266cc2e86 rdf:first N34dc05f35040465da8d649866945ccc0
    58 rdf:rest N8e1af84b21ee43849ef9717da9325598
    59 N8e1af84b21ee43849ef9717da9325598 rdf:first sg:person.011310567477.04
    60 rdf:rest N81f5fc700edd48f0835389e61f0be223
    61 N99349312cbbc4e248ca3a6c4751ba97c schema:volumeNumber 16
    62 rdf:type schema:PublicationVolume
    63 Nc801626ba0514d719a03d077c4ee7ed7 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Ncdbbb5388d8b4530a108a0778acae2d8 schema:name readcube_id
    66 schema:value aa70a723b8641bf59ec92819b1cf66f9e55f6b4248f60d809923ecb13b40cc95
    67 rdf:type schema:PropertyValue
    68 Nea8495bb616345208107d69e0bfd7f86 schema:issueNumber 1-2
    69 rdf:type schema:PublicationIssue
    70 Nf737ab4f2f724f468b2235fef708e2c9 schema:affiliation https://www.grid.ac/institutes/grid.423950.9
    71 schema:familyName Gobbi
    72 schema:givenName Marco
    73 rdf:type schema:Person
    74 Nfdd8f533583d42c4ba0d43157ce64df6 schema:name dimensions_id
    75 schema:value pub.1105046027
    76 rdf:type schema:PropertyValue
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Artificial Intelligence and Image Processing
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136802 schema:issn 1619-697X
    84 1619-6988
    85 schema:name Computational Management Science
    86 rdf:type schema:Periodical
    87 sg:person.011310567477.04 schema:affiliation https://www.grid.ac/institutes/grid.423950.9
    88 schema:familyName Soda
    89 schema:givenName Emiliano
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011310567477.04
    91 rdf:type schema:Person
    92 sg:person.015336524606.59 schema:affiliation https://www.grid.ac/institutes/grid.33236.37
    93 schema:familyName Vespucci
    94 schema:givenName Maria Teresa
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015336524606.59
    96 rdf:type schema:Person
    97 sg:pub.10.1007/978-3-642-33338-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047752814
    98 https://doi.org/10.1007/978-3-642-33338-5_11
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/j.ijepes.2012.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048256924
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1109/ijcnn.2009.5178985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094399800
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1109/iwies.2013.6698559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093549780
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1109/jsac.2013.sup.0513023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061318354
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1109/msp.2009.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061423252
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1109/naps.2012.6336366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095561459
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1109/psce.2011.5772466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094485856
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1109/secon.2012.6275834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094748717
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/tencon.2008.4766403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093190001
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/tpwrd.2010.2055670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061773480
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/tpwrd.2011.2161621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061773758
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1109/tst.2014.6787363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027272848
    123 rdf:type schema:CreativeWork
    124 https://www.grid.ac/institutes/grid.33236.37 schema:alternateName University of Bergamo
    125 schema:name Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy
    126 rdf:type schema:Organization
    127 https://www.grid.ac/institutes/grid.423950.9 schema:alternateName Centro Elettrotecnico Sperimentale Italiano (Italy)
    128 schema:name CESI, Milan, Italy
    129 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...