On the construction of hourly price forward curves for electricity prices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Rüdiger Kiesel, Florentina Paraschiv, Audun Sætherø

ABSTRACT

There are several approaches in the literature for the derivation of price forward curves (PFCs) which distinguish among each other by the procedure employed for the derivation of seasonality shapes, smoothing technique and by the design of the optimization procedure. However, a comparative study to highlight the strengths and weaknesses of different methods is missing. For the construction of PFCs we typically incorporate the information about market expectation from the observed futures prices and the deterministic seasonal effects of electricity prices. In most existing approaches, the seasonality shape is fitted to historically observed spot prices, and it is an exogenous input to the optimization procedure. As seasonal effects on electricity prices differ between markets, our model allows a more general and flexible definition of the seasonality shape. In this study, we propose an alternative calibration procedure for the seasonality shape, where the level of futures as well as historical spot prices are simultaneously taken into account in a joint optimization approach. We discuss comparatively the features of existing methods for PFCs, and highlight the advantages of our optimization procedure. More... »

PAGES

345-369

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10287-018-0300-6

DOI

http://dx.doi.org/10.1007/s10287-018-0300-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101267344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Duisburg-Essen", 
          "id": "https://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Chair of Energy Trading and Financial Services, University Duisburg-Essen, Universit\u00e4tstrasse 12, 45141, Essen, Germany", 
            "Department of Mathematics, University of Oslo, Blindern, P.O. Box 1053, 0316, Oslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiesel", 
        "givenName": "R\u00fcdiger", 
        "id": "sg:person.013726125161.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013726125161.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "NTNU Business School, Norwegian University of Science and Technology, 7491, Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paraschiv", 
        "givenName": "Florentina", 
        "id": "sg:person.016646746605.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646746605.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Duisburg-Essen", 
          "id": "https://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Chair of Energy Trading and Financial Services, University Duisburg-Essen, Universit\u00e4tstrasse 12, 45141, Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00e6ther\u00f8", 
        "givenName": "Audun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.enpol.2014.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027707159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13504860500396032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027877188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eneco.2014.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040657997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-9883(03)00039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044455773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-9883(03)00039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044455773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3905/jod.2007.694791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071560002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2017.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084071478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eneco.2017.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084072575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pesgm.2015.7286477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093947415"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "There are several approaches in the literature for the derivation of price forward curves (PFCs) which distinguish among each other by the procedure employed for the derivation of seasonality shapes, smoothing technique and by the design of the optimization procedure. However, a comparative study to highlight the strengths and weaknesses of different methods is missing. For the construction of PFCs we typically incorporate the information about market expectation from the observed futures prices and the deterministic seasonal effects of electricity prices. In most existing approaches, the seasonality shape is fitted to historically observed spot prices, and it is an exogenous input to the optimization procedure. As seasonal effects on electricity prices differ between markets, our model allows a more general and flexible definition of the seasonality shape. In this study, we propose an alternative calibration procedure for the seasonality shape, where the level of futures as well as historical spot prices are simultaneously taken into account in a joint optimization approach. We discuss comparatively the features of existing methods for PFCs, and highlight the advantages of our optimization procedure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10287-018-0300-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136802", 
        "issn": [
          "1619-697X", 
          "1619-6988"
        ], 
        "name": "Computational Management Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "On the construction of hourly price forward curves for electricity prices", 
    "pagination": "345-369", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea2b51422e79797b454e5a905d83dfe3fea348e4e72d4295021b69ef98e158e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10287-018-0300-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101267344"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10287-018-0300-6", 
      "https://app.dimensions.ai/details/publication/pub.1101267344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10287-018-0300-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10287-018-0300-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10287-018-0300-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10287-018-0300-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10287-018-0300-6'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10287-018-0300-6 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N28f3e3a41e19419cb6c394d466fe7338
4 schema:citation https://doi.org/10.1016/j.ejor.2017.02.016
5 https://doi.org/10.1016/j.eneco.2014.11.003
6 https://doi.org/10.1016/j.eneco.2017.03.002
7 https://doi.org/10.1016/j.enpol.2014.05.004
8 https://doi.org/10.1016/s0140-9883(03)00039-2
9 https://doi.org/10.1080/13504860500396032
10 https://doi.org/10.1109/pesgm.2015.7286477
11 https://doi.org/10.3905/jod.2007.694791
12 schema:datePublished 2019-02
13 schema:datePublishedReg 2019-02-01
14 schema:description There are several approaches in the literature for the derivation of price forward curves (PFCs) which distinguish among each other by the procedure employed for the derivation of seasonality shapes, smoothing technique and by the design of the optimization procedure. However, a comparative study to highlight the strengths and weaknesses of different methods is missing. For the construction of PFCs we typically incorporate the information about market expectation from the observed futures prices and the deterministic seasonal effects of electricity prices. In most existing approaches, the seasonality shape is fitted to historically observed spot prices, and it is an exogenous input to the optimization procedure. As seasonal effects on electricity prices differ between markets, our model allows a more general and flexible definition of the seasonality shape. In this study, we propose an alternative calibration procedure for the seasonality shape, where the level of futures as well as historical spot prices are simultaneously taken into account in a joint optimization approach. We discuss comparatively the features of existing methods for PFCs, and highlight the advantages of our optimization procedure.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N29e81f5704bf4462847357ea4294d5cd
19 N9e367ece12ab45b1a6ae64f7055456b0
20 sg:journal.1136802
21 schema:name On the construction of hourly price forward curves for electricity prices
22 schema:pagination 345-369
23 schema:productId N1b68ac464c334d14b667f20455f9d66a
24 N5ae5de113a3e4cc5a5f1df0af863bebc
25 Nf1482079103746759f21044e0c561266
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101267344
27 https://doi.org/10.1007/s10287-018-0300-6
28 schema:sdDatePublished 2019-04-11T13:47
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nbb026485dd20417ea1fbf000cbfcf376
31 schema:url https://link.springer.com/10.1007%2Fs10287-018-0300-6
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N00ec84f31f3b462692f9e83688764ebf schema:affiliation https://www.grid.ac/institutes/grid.5718.b
36 schema:familyName Sætherø
37 schema:givenName Audun
38 rdf:type schema:Person
39 N1b68ac464c334d14b667f20455f9d66a schema:name dimensions_id
40 schema:value pub.1101267344
41 rdf:type schema:PropertyValue
42 N22cf584387f04d958e95f117ec59dffc rdf:first N00ec84f31f3b462692f9e83688764ebf
43 rdf:rest rdf:nil
44 N28f3e3a41e19419cb6c394d466fe7338 rdf:first sg:person.013726125161.93
45 rdf:rest Nb9367d3ec4a74515b295937d0c35b0ae
46 N29e81f5704bf4462847357ea4294d5cd schema:volumeNumber 16
47 rdf:type schema:PublicationVolume
48 N5ae5de113a3e4cc5a5f1df0af863bebc schema:name readcube_id
49 schema:value ea2b51422e79797b454e5a905d83dfe3fea348e4e72d4295021b69ef98e158e7
50 rdf:type schema:PropertyValue
51 N9e367ece12ab45b1a6ae64f7055456b0 schema:issueNumber 1-2
52 rdf:type schema:PublicationIssue
53 Nb9367d3ec4a74515b295937d0c35b0ae rdf:first sg:person.016646746605.74
54 rdf:rest N22cf584387f04d958e95f117ec59dffc
55 Nbb026485dd20417ea1fbf000cbfcf376 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nf1482079103746759f21044e0c561266 schema:name doi
58 schema:value 10.1007/s10287-018-0300-6
59 rdf:type schema:PropertyValue
60 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
61 schema:name Economics
62 rdf:type schema:DefinedTerm
63 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
64 schema:name Applied Economics
65 rdf:type schema:DefinedTerm
66 sg:journal.1136802 schema:issn 1619-697X
67 1619-6988
68 schema:name Computational Management Science
69 rdf:type schema:Periodical
70 sg:person.013726125161.93 schema:affiliation https://www.grid.ac/institutes/grid.5718.b
71 schema:familyName Kiesel
72 schema:givenName Rüdiger
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013726125161.93
74 rdf:type schema:Person
75 sg:person.016646746605.74 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
76 schema:familyName Paraschiv
77 schema:givenName Florentina
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646746605.74
79 rdf:type schema:Person
80 https://doi.org/10.1016/j.ejor.2017.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084071478
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.eneco.2014.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040657997
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.eneco.2017.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084072575
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.enpol.2014.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027707159
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/s0140-9883(03)00039-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044455773
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1080/13504860500396032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027877188
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/pesgm.2015.7286477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093947415
93 rdf:type schema:CreativeWork
94 https://doi.org/10.3905/jod.2007.694791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071560002
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.5718.b schema:alternateName University of Duisburg-Essen
97 schema:name Chair of Energy Trading and Financial Services, University Duisburg-Essen, Universitätstrasse 12, 45141, Essen, Germany
98 Department of Mathematics, University of Oslo, Blindern, P.O. Box 1053, 0316, Oslo, Norway
99 rdf:type schema:Organization
100 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
101 schema:name NTNU Business School, Norwegian University of Science and Technology, 7491, Trondheim, Norway
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...