Implied volatility and state price density estimation: arbitrage analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Miloš Kopa, Sebastiano Vitali, Tomáš Tichý, Radek Hendrych

ABSTRACT

This paper deals with implied volatility (IV) estimation using no-arbitrage techniques. The current market practice is to obtain IV of liquid options as based on Black–Scholes (BS type hereafter) models. Such volatility is subsequently used to price illiquid or even exotic options. Therefore, it follows that the BS model can be related simultaneously to the whole set of IVs as given by maturity/moneyness relation of tradable options. Then, it is possible to get IV curve or surface (a so called smile or smirk). Since the moneyness and maturity of IV often do not match the data of valuated options, some sort of estimating and local smoothing is necessary. However, it can lead to arbitrage opportunity if no-arbitrage conditions on state price density (SPD) are ignored. In this paper, using option data on DAX index, we aim to analyse the behavior of IV and SPD with respect to different choices of bandwidth parameter h, time to maturity and kernel function. A set of bandwidths which violates no-arbitrage conditions is identified. We document that the change of h implies interesting changes in the violation interval of moneyness. We also perform the analysis after removing outliers, in order to show that not only outliers cause the violation of no-arbitrage conditions. Moreover, we propose a new measure of arbitrage which can be considered either for the SPD curve (arbitrage area measure) or for the SPD surface (arbitrage volume measure). We highlight the impact of h on the proposed measures considering the options on a German stock index. Finally, we propose an extension of the IV and SPD estimation for the case of options on a dividend-paying stock. More... »

PAGES

559-583

References to SciGraph publications

  • 2012. Option Data and Modeling BSM Implied Volatility in HANDBOOK OF COMPUTATIONAL FINANCE
  • 2003-10. The Dynamics of Implied Volatilities: A Common Principal Components Approach in REVIEW OF DERIVATIVES RESEARCH
  • 2007-12. On extracting information implied in options in COMPUTATIONAL STATISTICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10287-017-0283-8

    DOI

    http://dx.doi.org/10.1007/s10287-017-0283-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090377599


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Charles University", 
              "id": "https://www.grid.ac/institutes/grid.4491.8", 
              "name": [
                "Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovsk\u00e1 83, 186 75, Prague, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kopa", 
            "givenName": "Milo\u0161", 
            "id": "sg:person.013516426134.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013516426134.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charles University", 
              "id": "https://www.grid.ac/institutes/grid.4491.8", 
              "name": [
                "Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovsk\u00e1 83, 186 75, Prague, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vitali", 
            "givenName": "Sebastiano", 
            "id": "sg:person.012515305640.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515305640.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Ostrava", 
              "id": "https://www.grid.ac/institutes/grid.440850.d", 
              "name": [
                "Department of Finance, Faculty of Economics, V\u0160B-Technical University Ostrava, Sokolsk\u00e1 33, 701 21, Ostrava, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tich\u00fd", 
            "givenName": "Tom\u00e1\u0161", 
            "id": "sg:person.015647223443.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015647223443.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charles University", 
              "id": "https://www.grid.ac/institutes/grid.4491.8", 
              "name": [
                "Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovsk\u00e1 83, 186 75, Prague, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hendrych", 
            "givenName": "Radek", 
            "id": "sg:person.013326533267.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013326533267.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jempfin.2012.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006628840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00180-007-0061-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011379789", 
              "https://doi.org/10.1007/s00180-007-0061-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00180-007-0061-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011379789", 
              "https://doi.org/10.1007/s00180-007-0061-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/135048697334827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014523981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14697688.2010.514005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021121520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-17254-0_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021341578", 
              "https://doi.org/10.1007/978-3-642-17254-0_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csda.2008.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023510687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1469-7688/2/1/304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024500142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14697680802595585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024558343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2011.03.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029122587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/0022-1082.00083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044262726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeconom.2014.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045088412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:redr.0000004823.77464.2d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046278969", 
              "https://doi.org/10.1023/b:redr.0000004823.77464.2d"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/260062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058573543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21314/jcf.2003.098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068976603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3905/jod.2015.22.3.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071560186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/ccol0521382483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098723018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3003143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102129307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2139/ssrn.1538808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102278430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2139/ssrn.1882567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102360005"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10", 
        "datePublishedReg": "2017-10-01", 
        "description": "This paper deals with implied volatility (IV) estimation using no-arbitrage techniques. The current market practice is to obtain IV of liquid options as based on Black\u2013Scholes (BS type hereafter) models. Such volatility is subsequently used to price illiquid or even exotic options. Therefore, it follows that the BS model can be related simultaneously to the whole set of IVs as given by maturity/moneyness relation of tradable options. Then, it is possible to get IV curve or surface (a so called smile or smirk). Since the moneyness and maturity of IV often do not match the data of valuated options, some sort of estimating and local smoothing is necessary. However, it can lead to arbitrage opportunity if no-arbitrage conditions on state price density (SPD) are ignored. In this paper, using option data on DAX index, we aim to analyse the behavior of IV and SPD with respect to different choices of bandwidth parameter h, time to maturity and kernel function. A set of bandwidths which violates no-arbitrage conditions is identified. We document that the change of h implies interesting changes in the violation interval of moneyness. We also perform the analysis after removing outliers, in order to show that not only outliers cause the violation of no-arbitrage conditions. Moreover, we propose a new measure of arbitrage which can be considered either for the SPD curve (arbitrage area measure) or for the SPD surface (arbitrage volume measure). We highlight the impact of h on the proposed measures considering the options on a German stock index. Finally, we propose an extension of the IV and SPD estimation for the case of options on a dividend-paying stock.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10287-017-0283-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6867036", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6867381", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6876394", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136802", 
            "issn": [
              "1619-697X", 
              "1619-6988"
            ], 
            "name": "Computational Management Science", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "Implied volatility and state price density estimation: arbitrage analysis", 
        "pagination": "559-583", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7c02ff97b96ea517f39aca569f2e05a83728f0b2cdef0f062726ef9d1c78e966"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10287-017-0283-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090377599"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10287-017-0283-8", 
          "https://app.dimensions.ai/details/publication/pub.1090377599"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89812_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10287-017-0283-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10287-017-0283-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10287-017-0283-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10287-017-0283-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10287-017-0283-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    151 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10287-017-0283-8 schema:about anzsrc-for:14
    2 anzsrc-for:1402
    3 schema:author N5f5eaa1974f5481cae11fdb458ef4e1a
    4 schema:citation sg:pub.10.1007/978-3-642-17254-0_6
    5 sg:pub.10.1007/s00180-007-0061-0
    6 sg:pub.10.1023/b:redr.0000004823.77464.2d
    7 https://doi.org/10.1016/j.asoc.2011.03.016
    8 https://doi.org/10.1016/j.csda.2008.02.013
    9 https://doi.org/10.1016/j.jeconom.2014.09.003
    10 https://doi.org/10.1016/j.jempfin.2012.12.007
    11 https://doi.org/10.1017/ccol0521382483
    12 https://doi.org/10.1080/135048697334827
    13 https://doi.org/10.1080/14697680802595585
    14 https://doi.org/10.1080/14697688.2010.514005
    15 https://doi.org/10.1086/260062
    16 https://doi.org/10.1088/1469-7688/2/1/304
    17 https://doi.org/10.1111/0022-1082.00083
    18 https://doi.org/10.21314/jcf.2003.098
    19 https://doi.org/10.2139/ssrn.1538808
    20 https://doi.org/10.2139/ssrn.1882567
    21 https://doi.org/10.2307/3003143
    22 https://doi.org/10.3905/jod.2015.22.3.056
    23 schema:datePublished 2017-10
    24 schema:datePublishedReg 2017-10-01
    25 schema:description This paper deals with implied volatility (IV) estimation using no-arbitrage techniques. The current market practice is to obtain IV of liquid options as based on Black–Scholes (BS type hereafter) models. Such volatility is subsequently used to price illiquid or even exotic options. Therefore, it follows that the BS model can be related simultaneously to the whole set of IVs as given by maturity/moneyness relation of tradable options. Then, it is possible to get IV curve or surface (a so called smile or smirk). Since the moneyness and maturity of IV often do not match the data of valuated options, some sort of estimating and local smoothing is necessary. However, it can lead to arbitrage opportunity if no-arbitrage conditions on state price density (SPD) are ignored. In this paper, using option data on DAX index, we aim to analyse the behavior of IV and SPD with respect to different choices of bandwidth parameter h, time to maturity and kernel function. A set of bandwidths which violates no-arbitrage conditions is identified. We document that the change of h implies interesting changes in the violation interval of moneyness. We also perform the analysis after removing outliers, in order to show that not only outliers cause the violation of no-arbitrage conditions. Moreover, we propose a new measure of arbitrage which can be considered either for the SPD curve (arbitrage area measure) or for the SPD surface (arbitrage volume measure). We highlight the impact of h on the proposed measures considering the options on a German stock index. Finally, we propose an extension of the IV and SPD estimation for the case of options on a dividend-paying stock.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N51930558c1fa48008f37208a9db3006f
    30 Nf572b0bcbcec4436812f521bcdbea0b4
    31 sg:journal.1136802
    32 schema:name Implied volatility and state price density estimation: arbitrage analysis
    33 schema:pagination 559-583
    34 schema:productId N2e21ed76c3ff4ba3a77fd17f2e39447f
    35 N54da6a96e5194e8eaf99fd0c974c4e3e
    36 Ndfee01a6330a4c87ba97a49bb2aedfd3
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090377599
    38 https://doi.org/10.1007/s10287-017-0283-8
    39 schema:sdDatePublished 2019-04-11T09:58
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Nf4608897bc2c44f5bef5cd8f94ad65e9
    42 schema:url https://link.springer.com/10.1007%2Fs10287-017-0283-8
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N0f3b97f43139456a9d0e0f9c4ecf98e2 rdf:first sg:person.013326533267.51
    47 rdf:rest rdf:nil
    48 N2e21ed76c3ff4ba3a77fd17f2e39447f schema:name readcube_id
    49 schema:value 7c02ff97b96ea517f39aca569f2e05a83728f0b2cdef0f062726ef9d1c78e966
    50 rdf:type schema:PropertyValue
    51 N51930558c1fa48008f37208a9db3006f schema:volumeNumber 14
    52 rdf:type schema:PublicationVolume
    53 N54da6a96e5194e8eaf99fd0c974c4e3e schema:name doi
    54 schema:value 10.1007/s10287-017-0283-8
    55 rdf:type schema:PropertyValue
    56 N5f5eaa1974f5481cae11fdb458ef4e1a rdf:first sg:person.013516426134.04
    57 rdf:rest N8d7a1ee89aea4ff0879fd833d89365e9
    58 N8d7a1ee89aea4ff0879fd833d89365e9 rdf:first sg:person.012515305640.58
    59 rdf:rest Nce1a34ca45e04b9e9a97e76068c0efc6
    60 Nce1a34ca45e04b9e9a97e76068c0efc6 rdf:first sg:person.015647223443.42
    61 rdf:rest N0f3b97f43139456a9d0e0f9c4ecf98e2
    62 Ndfee01a6330a4c87ba97a49bb2aedfd3 schema:name dimensions_id
    63 schema:value pub.1090377599
    64 rdf:type schema:PropertyValue
    65 Nf4608897bc2c44f5bef5cd8f94ad65e9 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 Nf572b0bcbcec4436812f521bcdbea0b4 schema:issueNumber 4
    68 rdf:type schema:PublicationIssue
    69 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Economics
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Applied Economics
    74 rdf:type schema:DefinedTerm
    75 sg:grant.6867036 http://pending.schema.org/fundedItem sg:pub.10.1007/s10287-017-0283-8
    76 rdf:type schema:MonetaryGrant
    77 sg:grant.6867381 http://pending.schema.org/fundedItem sg:pub.10.1007/s10287-017-0283-8
    78 rdf:type schema:MonetaryGrant
    79 sg:grant.6876394 http://pending.schema.org/fundedItem sg:pub.10.1007/s10287-017-0283-8
    80 rdf:type schema:MonetaryGrant
    81 sg:journal.1136802 schema:issn 1619-697X
    82 1619-6988
    83 schema:name Computational Management Science
    84 rdf:type schema:Periodical
    85 sg:person.012515305640.58 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
    86 schema:familyName Vitali
    87 schema:givenName Sebastiano
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515305640.58
    89 rdf:type schema:Person
    90 sg:person.013326533267.51 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
    91 schema:familyName Hendrych
    92 schema:givenName Radek
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013326533267.51
    94 rdf:type schema:Person
    95 sg:person.013516426134.04 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
    96 schema:familyName Kopa
    97 schema:givenName Miloš
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013516426134.04
    99 rdf:type schema:Person
    100 sg:person.015647223443.42 schema:affiliation https://www.grid.ac/institutes/grid.440850.d
    101 schema:familyName Tichý
    102 schema:givenName Tomáš
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015647223443.42
    104 rdf:type schema:Person
    105 sg:pub.10.1007/978-3-642-17254-0_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021341578
    106 https://doi.org/10.1007/978-3-642-17254-0_6
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s00180-007-0061-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011379789
    109 https://doi.org/10.1007/s00180-007-0061-0
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1023/b:redr.0000004823.77464.2d schema:sameAs https://app.dimensions.ai/details/publication/pub.1046278969
    112 https://doi.org/10.1023/b:redr.0000004823.77464.2d
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.asoc.2011.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029122587
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.csda.2008.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023510687
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.jeconom.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045088412
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.jempfin.2012.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006628840
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1017/ccol0521382483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098723018
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1080/135048697334827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014523981
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1080/14697680802595585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024558343
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1080/14697688.2010.514005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021121520
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1086/260062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058573543
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1088/1469-7688/2/1/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024500142
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1111/0022-1082.00083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044262726
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.21314/jcf.2003.098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068976603
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.2139/ssrn.1538808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102278430
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.2139/ssrn.1882567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102360005
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.2307/3003143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102129307
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.3905/jod.2015.22.3.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071560186
    145 rdf:type schema:CreativeWork
    146 https://www.grid.ac/institutes/grid.440850.d schema:alternateName Technical University of Ostrava
    147 schema:name Department of Finance, Faculty of Economics, VŠB-Technical University Ostrava, Sokolská 33, 701 21, Ostrava, Czech Republic
    148 rdf:type schema:Organization
    149 https://www.grid.ac/institutes/grid.4491.8 schema:alternateName Charles University
    150 schema:name Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75, Prague, Czech Republic
    151 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...