Ultrasonographic Thyroid Nodule Classification Using a Deep Convolutional Neural Network with Surgical Pathology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-07-23

AUTHORS

Soon Woo Kwon, Ik Joon Choi, Ju Yong Kang, Won Il Jang, Guk-Haeng Lee, Myung-Chul Lee

ABSTRACT

Ultrasonography with fine-needle aspiration biopsy is commonly used to detect thyroid cancer. However, thyroid ultrasonography is prone to subjective interpretations and interobserver variabilities. The objective of this study was to develop a thyroid nodule classification system for ultrasonography using convolutional neural networks. Transverse and longitudinal ultrasonographic thyroid images of 762 patients were used to create a deep learning model. After surgical biopsy, 325 cases were confirmed to be benign and 437 cases were confirmed to be papillary thyroid carcinoma. Image annotation marks were removed, and missing regions were recovered using neighboring parenchyme. To reduce overfitting of the deep learning model, we applied data augmentation, global average pooling. And 4-fold cross-validation was performed to detect overfitting. We employed a transfer learning method with the pretrained deep learning model VGG16. The average area under the curve of the model was 0.916, and its specificity and sensitivity were 0.70 and 0.92, respectively. Positive and negative predictive values were 0.90 and 0.75, respectively. We introduced a new fine-tuned deep learning model for classifying thyroid nodules in ultrasonography. We expect that this model will help physicians diagnose thyroid nodules with ultrasonography. More... »

PAGES

1202-1208

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10278-020-00362-w

DOI

http://dx.doi.org/10.1007/s10278-020-00362-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1129601980

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32705433


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pathology, Surgical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thyroid Nodule", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Radiation Medicine Clinical Research Division, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Radiation Medicine Clinical Research Division, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Soon Woo", 
        "id": "sg:person.013370673033.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013370673033.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Otorhinolaryngology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-gil, Nowon-gu, 139-706, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Department of Otorhinolaryngology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-gil, Nowon-gu, 139-706, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Ik Joon", 
        "id": "sg:person.01047036702.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047036702.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Otorhinolaryngology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-gil, Nowon-gu, 139-706, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Department of Otorhinolaryngology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-gil, Nowon-gu, 139-706, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Ju Yong", 
        "id": "sg:person.012300542343.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300542343.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "Won Il", 
        "id": "sg:person.01306764130.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306764130.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Otorhinolaryngology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-gil, Nowon-gu, 139-706, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Department of Otorhinolaryngology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-gil, Nowon-gu, 139-706, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Guk-Haeng", 
        "id": "sg:person.01274445453.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274445453.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Otorhinolaryngology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-gil, Nowon-gu, 139-706, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Department of Otorhinolaryngology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-gil, Nowon-gu, 139-706, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Myung-Chul", 
        "id": "sg:person.01337220140.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337220140.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13244-013-0256-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029739436", 
          "https://doi.org/10.1007/s13244-013-0256-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024028888", 
          "https://doi.org/10.1007/978-3-319-10404-1_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-017-9997-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090577204", 
          "https://doi.org/10.1007/s10278-017-9997-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-015-0816-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009767488", 
          "https://doi.org/10.1007/s11263-015-0816-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-07-23", 
    "datePublishedReg": "2020-07-23", 
    "description": "Ultrasonography with fine-needle aspiration biopsy is commonly used to detect thyroid cancer. However, thyroid ultrasonography is prone to subjective interpretations and interobserver variabilities. The objective of this study was to develop a thyroid nodule classification system for ultrasonography using convolutional neural networks. Transverse and longitudinal ultrasonographic thyroid images of 762 patients were used to create a deep learning model. After surgical biopsy, 325 cases were confirmed to be benign and 437 cases were confirmed to be papillary thyroid carcinoma. Image annotation marks were removed, and missing regions were recovered using neighboring parenchyme. To reduce overfitting of the deep learning model, we applied data augmentation, global average pooling. And 4-fold cross-validation was performed to detect overfitting. We employed a transfer learning method with the pretrained deep learning model VGG16. The average area under the curve of the model was 0.916, and its specificity and sensitivity were 0.70 and 0.92, respectively. Positive and negative predictive values were 0.90 and 0.75, respectively. We introduced a new fine-tuned deep learning model for classifying thyroid nodules in ultrasonography. We expect that this model will help physicians diagnose thyroid nodules with ultrasonography.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10278-020-00362-w", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1100894", 
        "issn": [
          "0897-1889", 
          "1618-727X"
        ], 
        "name": "Journal of Digital Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "keywords": [
      "deep learning models", 
      "convolutional neural network", 
      "learning model", 
      "neural network", 
      "deep convolutional neural network", 
      "global average pooling", 
      "transfer learning method", 
      "Thyroid Nodule Classification", 
      "thyroid nodule classification system", 
      "data augmentation", 
      "model VGG16", 
      "average pooling", 
      "nodule classification", 
      "learning methods", 
      "thyroid images", 
      "overfitting", 
      "network", 
      "classification system", 
      "VGG16", 
      "images", 
      "classification", 
      "model", 
      "pooling", 
      "subjective interpretation", 
      "average area", 
      "system", 
      "augmentation", 
      "method", 
      "interobserver variability", 
      "objective", 
      "cases", 
      "area", 
      "marks", 
      "interpretation", 
      "surgical pathology", 
      "values", 
      "curves", 
      "physicians", 
      "thyroid nodules", 
      "variability", 
      "region", 
      "study", 
      "nodules", 
      "specificity", 
      "sensitivity", 
      "predictive value", 
      "negative predictive value", 
      "pathology", 
      "thyroid ultrasonography", 
      "surgical biopsy", 
      "cancer", 
      "patients", 
      "ultrasonography", 
      "biopsy", 
      "fine-needle aspiration biopsy", 
      "thyroid cancer", 
      "parenchyme", 
      "aspiration biopsy", 
      "papillary thyroid carcinoma", 
      "carcinoma", 
      "thyroid carcinoma"
    ], 
    "name": "Ultrasonographic Thyroid Nodule Classification Using a Deep Convolutional Neural Network with Surgical Pathology", 
    "pagination": "1202-1208", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1129601980"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10278-020-00362-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32705433"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10278-020-00362-w", 
      "https://app.dimensions.ai/details/publication/pub.1129601980"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_851.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10278-020-00362-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10278-020-00362-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10278-020-00362-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10278-020-00362-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10278-020-00362-w'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      96 URIs      84 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10278-020-00362-w schema:about N078f76c2b0b347e6b1f87cc0ee12449e
2 N4fd03eae5fc34c24857786639048d49a
3 N82923e0905a94066aa71762262e3e291
4 N895308152c0a4d7c8d9ac30d7759d8b3
5 N9eb2e10c7b2e48c2b02ff695465d2de4
6 Nb5fc7dd5b7d0438ea5aecd1c52de692a
7 anzsrc-for:11
8 anzsrc-for:1103
9 schema:author N5589e0412f0f4f9cb6e1639790c9dd2e
10 schema:citation sg:pub.10.1007/978-3-319-10404-1_65
11 sg:pub.10.1007/s10278-017-9997-y
12 sg:pub.10.1007/s11263-015-0816-y
13 sg:pub.10.1007/s13244-013-0256-6
14 schema:datePublished 2020-07-23
15 schema:datePublishedReg 2020-07-23
16 schema:description Ultrasonography with fine-needle aspiration biopsy is commonly used to detect thyroid cancer. However, thyroid ultrasonography is prone to subjective interpretations and interobserver variabilities. The objective of this study was to develop a thyroid nodule classification system for ultrasonography using convolutional neural networks. Transverse and longitudinal ultrasonographic thyroid images of 762 patients were used to create a deep learning model. After surgical biopsy, 325 cases were confirmed to be benign and 437 cases were confirmed to be papillary thyroid carcinoma. Image annotation marks were removed, and missing regions were recovered using neighboring parenchyme. To reduce overfitting of the deep learning model, we applied data augmentation, global average pooling. And 4-fold cross-validation was performed to detect overfitting. We employed a transfer learning method with the pretrained deep learning model VGG16. The average area under the curve of the model was 0.916, and its specificity and sensitivity were 0.70 and 0.92, respectively. Positive and negative predictive values were 0.90 and 0.75, respectively. We introduced a new fine-tuned deep learning model for classifying thyroid nodules in ultrasonography. We expect that this model will help physicians diagnose thyroid nodules with ultrasonography.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf Nd350b84ce9df44198491476578377223
20 Nef48726ea5484c0a81cb6e2851ded25c
21 sg:journal.1100894
22 schema:keywords Thyroid Nodule Classification
23 VGG16
24 area
25 aspiration biopsy
26 augmentation
27 average area
28 average pooling
29 biopsy
30 cancer
31 carcinoma
32 cases
33 classification
34 classification system
35 convolutional neural network
36 curves
37 data augmentation
38 deep convolutional neural network
39 deep learning models
40 fine-needle aspiration biopsy
41 global average pooling
42 images
43 interobserver variability
44 interpretation
45 learning methods
46 learning model
47 marks
48 method
49 model
50 model VGG16
51 negative predictive value
52 network
53 neural network
54 nodule classification
55 nodules
56 objective
57 overfitting
58 papillary thyroid carcinoma
59 parenchyme
60 pathology
61 patients
62 physicians
63 pooling
64 predictive value
65 region
66 sensitivity
67 specificity
68 study
69 subjective interpretation
70 surgical biopsy
71 surgical pathology
72 system
73 thyroid cancer
74 thyroid carcinoma
75 thyroid images
76 thyroid nodule classification system
77 thyroid nodules
78 thyroid ultrasonography
79 transfer learning method
80 ultrasonography
81 values
82 variability
83 schema:name Ultrasonographic Thyroid Nodule Classification Using a Deep Convolutional Neural Network with Surgical Pathology
84 schema:pagination 1202-1208
85 schema:productId N38fb325d7dbf4435b3e3a2b451e6b8dc
86 N5e288c78a2a94f33b1cdf3dce6afaf73
87 N64288633a30547e6af62f0c647e8d4e3
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129601980
89 https://doi.org/10.1007/s10278-020-00362-w
90 schema:sdDatePublished 2022-09-02T16:04
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N48301aa2fd0e4b6ab04efeefd4dbc7ee
93 schema:url https://doi.org/10.1007/s10278-020-00362-w
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N078f76c2b0b347e6b1f87cc0ee12449e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Humans
99 rdf:type schema:DefinedTerm
100 N1d92379bf41642969233caed12705088 rdf:first sg:person.01337220140.25
101 rdf:rest rdf:nil
102 N38fb325d7dbf4435b3e3a2b451e6b8dc schema:name doi
103 schema:value 10.1007/s10278-020-00362-w
104 rdf:type schema:PropertyValue
105 N48301aa2fd0e4b6ab04efeefd4dbc7ee schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N4c89e8e0b2234c4f800e9594b6b0fc99 rdf:first sg:person.01306764130.88
108 rdf:rest N65de91a004d94c408a47c8ec79d2f268
109 N4fd03eae5fc34c24857786639048d49a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Sensitivity and Specificity
111 rdf:type schema:DefinedTerm
112 N5589e0412f0f4f9cb6e1639790c9dd2e rdf:first sg:person.013370673033.37
113 rdf:rest N5cec410fc88e4d07aed2dc9e8cae6ef0
114 N5cec410fc88e4d07aed2dc9e8cae6ef0 rdf:first sg:person.01047036702.07
115 rdf:rest N6c651602d13e4d2c89d647ff5205c095
116 N5e288c78a2a94f33b1cdf3dce6afaf73 schema:name dimensions_id
117 schema:value pub.1129601980
118 rdf:type schema:PropertyValue
119 N64288633a30547e6af62f0c647e8d4e3 schema:name pubmed_id
120 schema:value 32705433
121 rdf:type schema:PropertyValue
122 N65de91a004d94c408a47c8ec79d2f268 rdf:first sg:person.01274445453.32
123 rdf:rest N1d92379bf41642969233caed12705088
124 N6c651602d13e4d2c89d647ff5205c095 rdf:first sg:person.012300542343.14
125 rdf:rest N4c89e8e0b2234c4f800e9594b6b0fc99
126 N82923e0905a94066aa71762262e3e291 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Neural Networks, Computer
128 rdf:type schema:DefinedTerm
129 N895308152c0a4d7c8d9ac30d7759d8b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Ultrasonography
131 rdf:type schema:DefinedTerm
132 N9eb2e10c7b2e48c2b02ff695465d2de4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Thyroid Nodule
134 rdf:type schema:DefinedTerm
135 Nb5fc7dd5b7d0438ea5aecd1c52de692a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Pathology, Surgical
137 rdf:type schema:DefinedTerm
138 Nd350b84ce9df44198491476578377223 schema:issueNumber 5
139 rdf:type schema:PublicationIssue
140 Nef48726ea5484c0a81cb6e2851ded25c schema:volumeNumber 33
141 rdf:type schema:PublicationVolume
142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
143 schema:name Medical and Health Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
146 schema:name Clinical Sciences
147 rdf:type schema:DefinedTerm
148 sg:journal.1100894 schema:issn 0897-1889
149 1618-727X
150 schema:name Journal of Digital Imaging
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.01047036702.07 schema:affiliation grid-institutes:grid.415464.6
154 schema:familyName Choi
155 schema:givenName Ik Joon
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047036702.07
157 rdf:type schema:Person
158 sg:person.012300542343.14 schema:affiliation grid-institutes:grid.415464.6
159 schema:familyName Kang
160 schema:givenName Ju Yong
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300542343.14
162 rdf:type schema:Person
163 sg:person.01274445453.32 schema:affiliation grid-institutes:grid.415464.6
164 schema:familyName Lee
165 schema:givenName Guk-Haeng
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274445453.32
167 rdf:type schema:Person
168 sg:person.01306764130.88 schema:affiliation grid-institutes:grid.415464.6
169 schema:familyName Jang
170 schema:givenName Won Il
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306764130.88
172 rdf:type schema:Person
173 sg:person.013370673033.37 schema:affiliation grid-institutes:grid.415464.6
174 schema:familyName Kwon
175 schema:givenName Soon Woo
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013370673033.37
177 rdf:type schema:Person
178 sg:person.01337220140.25 schema:affiliation grid-institutes:grid.415464.6
179 schema:familyName Lee
180 schema:givenName Myung-Chul
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337220140.25
182 rdf:type schema:Person
183 sg:pub.10.1007/978-3-319-10404-1_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024028888
184 https://doi.org/10.1007/978-3-319-10404-1_65
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s10278-017-9997-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090577204
187 https://doi.org/10.1007/s10278-017-9997-y
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s11263-015-0816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767488
190 https://doi.org/10.1007/s11263-015-0816-y
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s13244-013-0256-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029739436
193 https://doi.org/10.1007/s13244-013-0256-6
194 rdf:type schema:CreativeWork
195 grid-institutes:grid.415464.6 schema:alternateName Department of Otorhinolaryngology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-gil, Nowon-gu, 139-706, Seoul, South Korea
196 Radiation Medicine Clinical Research Division, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
197 Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
198 schema:name Department of Otorhinolaryngology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-gil, Nowon-gu, 139-706, Seoul, South Korea
199 Radiation Medicine Clinical Research Division, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
200 Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...