Automatic Normalization of Anatomical Phrases in Radiology Reports Using Unsupervised Learning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Amir M. Tahmasebi, Henghui Zhu, Gabriel Mankovich, Peter Prinsen, Prescott Klassen, Sam Pilato, Rob van Ommering, Pritesh Patel, Martin L. Gunn, Paul Chang

ABSTRACT

In today's radiology workflow, free-text reporting is established as the most common medium to capture, store, and communicate clinical information. Radiologists routinely refer to prior radiology reports of a patient to recall critical information for new diagnosis, which is quite tedious, time consuming, and prone to human error. Automatic structuring of report content is desired to facilitate such inquiry of information. In this work, we propose an unsupervised machine learning approach to automatically structure radiology reports by detecting and normalizing anatomical phrases based on the Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) ontology. The proposed approach combines word embedding-based semantic learning with ontology-based concept mapping to derive the desired concept normalization. The word embedding model was trained using a large corpus of unlabeled radiology reports. Fifty-six anatomical labels were extracted from SNOMED CT as class labels of the whole human anatomy. The proposed framework was compared against a number of state-of-the-art supervised and unsupervised approaches. Radiology reports from three different clinical sites were manually labeled for testing. The proposed approach outperformed other techniques yielding an average precision of 82.6%. The proposed framework boosts the coverage and performance of conventional approaches for concept normalization, by applying word embedding techniques in semantic learning, while avoiding the challenge of having access to a large amount of annotated data, which is typically required for training classifiers. More... »

PAGES

6-18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10278-018-0116-5

DOI

http://dx.doi.org/10.1007/s10278-018-0116-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105979421

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30076490


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Philips (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417285.d", 
          "name": [
            "Philips Research North America, 2 Canal Park, 3rd Floor, 02141, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tahmasebi", 
        "givenName": "Amir M.", 
        "id": "sg:person.0741777712.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741777712.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Division of Systems Engineering, Boston University, Brookline, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Henghui", 
        "id": "sg:person.07717672120.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717672120.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philips (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417285.d", 
          "name": [
            "Philips Research North America, 2 Canal Park, 3rd Floor, 02141, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mankovich", 
        "givenName": "Gabriel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philips (Netherlands)", 
          "id": "https://www.grid.ac/institutes/grid.417284.c", 
          "name": [
            "Philips Research, Eindhoven, North Brabant, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prinsen", 
        "givenName": "Peter", 
        "id": "sg:person.015636172723.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636172723.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philips (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417285.d", 
          "name": [
            "Philips Research North America, 2 Canal Park, 3rd Floor, 02141, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klassen", 
        "givenName": "Prescott", 
        "id": "sg:person.01132004406.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132004406.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philips (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417285.d", 
          "name": [
            "Philips Research North America, 2 Canal Park, 3rd Floor, 02141, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pilato", 
        "givenName": "Sam", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Philips (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417285.d", 
          "name": [
            "Philips Research North America, 2 Canal Park, 3rd Floor, 02141, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Ommering", 
        "givenName": "Rob", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "Department of Radiology, University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patel", 
        "givenName": "Pritesh", 
        "id": "sg:person.01210430637.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210430637.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gunn", 
        "givenName": "Martin L.", 
        "id": "sg:person.01361351663.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361351663.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412578.d", 
          "name": [
            "Department of Radiology, University of Chicago Medical Center, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Paul", 
        "id": "sg:person.01307544254.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307544254.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jacr.2007.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000888179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/51066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011412664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022858133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4573(88)90021-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032478827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jamia.2009.001560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035244914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/eb046814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037275209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038140272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/coli.07-034-r2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045615725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.21.1.g01ja18237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074750991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/w17-2312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096025250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/w16-2922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098653399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1567594.1567610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099140177"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "In today's radiology workflow, free-text reporting is established as the most common medium to capture, store, and communicate clinical information. Radiologists routinely refer to prior radiology reports of a patient to recall critical information for new diagnosis, which is quite tedious, time consuming, and prone to human error. Automatic structuring of report content is desired to facilitate such inquiry of information. In this work, we propose an unsupervised machine learning approach to automatically structure radiology reports by detecting and normalizing anatomical phrases based on the Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) ontology. The proposed approach combines word embedding-based semantic learning with ontology-based concept mapping to derive the desired concept normalization. The word embedding model was trained using a large corpus of unlabeled radiology reports. Fifty-six anatomical labels were extracted from SNOMED CT as class labels of the whole human anatomy. The proposed framework was compared against a number of state-of-the-art supervised and unsupervised approaches. Radiology reports from three different clinical sites were manually labeled for testing. The proposed approach outperformed other techniques yielding an average precision of 82.6%. The proposed framework boosts the coverage and performance of conventional approaches for concept normalization, by applying word embedding techniques in semantic learning, while avoiding the challenge of having access to a large amount of annotated data, which is typically required for training classifiers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10278-018-0116-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1100894", 
        "issn": [
          "0897-1889", 
          "1618-727X"
        ], 
        "name": "Journal of Digital Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Automatic Normalization of Anatomical Phrases in Radiology Reports Using Unsupervised Learning", 
    "pagination": "6-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bc41f45b2ceec9ee62af708706befdbb4f95bfb1e72c3cea6c0a9c0bb0761647"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30076490"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9100529"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10278-018-0116-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105979421"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10278-018-0116-5", 
      "https://app.dimensions.ai/details/publication/pub.1105979421"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53010_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10278-018-0116-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10278-018-0116-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10278-018-0116-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10278-018-0116-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10278-018-0116-5'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      41 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10278-018-0116-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N48bb32d39fbc4b379a975372210e6a11
4 schema:citation https://doi.org/10.1016/0306-4573(88)90021-0
5 https://doi.org/10.1016/j.jacr.2007.01.015
6 https://doi.org/10.1093/bioinformatics/btt580
7 https://doi.org/10.1108/eb046814
8 https://doi.org/10.1136/jamia.2009.001560
9 https://doi.org/10.1148/radiographics.21.1.g01ja18237
10 https://doi.org/10.1162/coli.07-034-r2
11 https://doi.org/10.1162/neco.1997.9.8.1735
12 https://doi.org/10.18653/v1/w16-2922
13 https://doi.org/10.18653/v1/w17-2312
14 https://doi.org/10.3115/1567594.1567610
15 https://doi.org/10.5772/51066
16 schema:datePublished 2019-02
17 schema:datePublishedReg 2019-02-01
18 schema:description In today's radiology workflow, free-text reporting is established as the most common medium to capture, store, and communicate clinical information. Radiologists routinely refer to prior radiology reports of a patient to recall critical information for new diagnosis, which is quite tedious, time consuming, and prone to human error. Automatic structuring of report content is desired to facilitate such inquiry of information. In this work, we propose an unsupervised machine learning approach to automatically structure radiology reports by detecting and normalizing anatomical phrases based on the Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) ontology. The proposed approach combines word embedding-based semantic learning with ontology-based concept mapping to derive the desired concept normalization. The word embedding model was trained using a large corpus of unlabeled radiology reports. Fifty-six anatomical labels were extracted from SNOMED CT as class labels of the whole human anatomy. The proposed framework was compared against a number of state-of-the-art supervised and unsupervised approaches. Radiology reports from three different clinical sites were manually labeled for testing. The proposed approach outperformed other techniques yielding an average precision of 82.6%. The proposed framework boosts the coverage and performance of conventional approaches for concept normalization, by applying word embedding techniques in semantic learning, while avoiding the challenge of having access to a large amount of annotated data, which is typically required for training classifiers.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N5ebafe640f64446dae6dc7ab569db6fa
23 Ne9dd70f4022a4081a948695133703108
24 sg:journal.1100894
25 schema:name Automatic Normalization of Anatomical Phrases in Radiology Reports Using Unsupervised Learning
26 schema:pagination 6-18
27 schema:productId N1f9476b3844c4089bebe54b152a2d51c
28 N6073caae1b01487f813c8912c7a9ede9
29 Nb253411ebd6c427fbcb5b90bc96da083
30 Nf35da4d1b24544639b706638b98ee664
31 Nfa6944a001d9462cbf6286319fcc2746
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105979421
33 https://doi.org/10.1007/s10278-018-0116-5
34 schema:sdDatePublished 2019-04-11T11:24
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N3eb5d56124d144cd8725f299a73ae198
37 schema:url https://link.springer.com/10.1007%2Fs10278-018-0116-5
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0a2d815d7b7b4c7aa103c3251af867b7 schema:affiliation https://www.grid.ac/institutes/grid.417285.d
42 schema:familyName van Ommering
43 schema:givenName Rob
44 rdf:type schema:Person
45 N1a75dce7be844e20b7ada32a89655d9c rdf:first sg:person.07717672120.17
46 rdf:rest N789bca6a517147cf818b5de4d282dfb2
47 N1a90ead36aa54466baea165b0662a674 schema:affiliation https://www.grid.ac/institutes/grid.417285.d
48 schema:familyName Pilato
49 schema:givenName Sam
50 rdf:type schema:Person
51 N1f9476b3844c4089bebe54b152a2d51c schema:name pubmed_id
52 schema:value 30076490
53 rdf:type schema:PropertyValue
54 N2055a414d9bf4b2192b4cc9889e5371a rdf:first sg:person.01210430637.32
55 rdf:rest N2ed74e0d225d4fbaad59217713d71f89
56 N2ed74e0d225d4fbaad59217713d71f89 rdf:first sg:person.01361351663.06
57 rdf:rest Nfd2091c8ac984ba48dda0c36ccbc1386
58 N3865fcc9de9d43d99584fc9360b33284 schema:affiliation https://www.grid.ac/institutes/grid.417285.d
59 schema:familyName Mankovich
60 schema:givenName Gabriel
61 rdf:type schema:Person
62 N3eb5d56124d144cd8725f299a73ae198 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N48bb32d39fbc4b379a975372210e6a11 rdf:first sg:person.0741777712.99
65 rdf:rest N1a75dce7be844e20b7ada32a89655d9c
66 N5ebafe640f64446dae6dc7ab569db6fa schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N6073caae1b01487f813c8912c7a9ede9 schema:name doi
69 schema:value 10.1007/s10278-018-0116-5
70 rdf:type schema:PropertyValue
71 N6fe4499572e445a88a26c8c3387ebc6a rdf:first N1a90ead36aa54466baea165b0662a674
72 rdf:rest N87884c3147f84560b7ff59b03ad80674
73 N789bca6a517147cf818b5de4d282dfb2 rdf:first N3865fcc9de9d43d99584fc9360b33284
74 rdf:rest Naa4b21dad04d4212a3eea9e3736b2f7d
75 N87884c3147f84560b7ff59b03ad80674 rdf:first N0a2d815d7b7b4c7aa103c3251af867b7
76 rdf:rest N2055a414d9bf4b2192b4cc9889e5371a
77 Na34e3bf9ec004f8fb0b17ca6b74490a9 rdf:first sg:person.01132004406.41
78 rdf:rest N6fe4499572e445a88a26c8c3387ebc6a
79 Naa4b21dad04d4212a3eea9e3736b2f7d rdf:first sg:person.015636172723.82
80 rdf:rest Na34e3bf9ec004f8fb0b17ca6b74490a9
81 Nb253411ebd6c427fbcb5b90bc96da083 schema:name nlm_unique_id
82 schema:value 9100529
83 rdf:type schema:PropertyValue
84 Ne9dd70f4022a4081a948695133703108 schema:volumeNumber 32
85 rdf:type schema:PublicationVolume
86 Nf35da4d1b24544639b706638b98ee664 schema:name readcube_id
87 schema:value bc41f45b2ceec9ee62af708706befdbb4f95bfb1e72c3cea6c0a9c0bb0761647
88 rdf:type schema:PropertyValue
89 Nfa6944a001d9462cbf6286319fcc2746 schema:name dimensions_id
90 schema:value pub.1105979421
91 rdf:type schema:PropertyValue
92 Nfd2091c8ac984ba48dda0c36ccbc1386 rdf:first sg:person.01307544254.93
93 rdf:rest rdf:nil
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:journal.1100894 schema:issn 0897-1889
101 1618-727X
102 schema:name Journal of Digital Imaging
103 rdf:type schema:Periodical
104 sg:person.01132004406.41 schema:affiliation https://www.grid.ac/institutes/grid.417285.d
105 schema:familyName Klassen
106 schema:givenName Prescott
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132004406.41
108 rdf:type schema:Person
109 sg:person.01210430637.32 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
110 schema:familyName Patel
111 schema:givenName Pritesh
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210430637.32
113 rdf:type schema:Person
114 sg:person.01307544254.93 schema:affiliation https://www.grid.ac/institutes/grid.412578.d
115 schema:familyName Chang
116 schema:givenName Paul
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307544254.93
118 rdf:type schema:Person
119 sg:person.01361351663.06 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
120 schema:familyName Gunn
121 schema:givenName Martin L.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361351663.06
123 rdf:type schema:Person
124 sg:person.015636172723.82 schema:affiliation https://www.grid.ac/institutes/grid.417284.c
125 schema:familyName Prinsen
126 schema:givenName Peter
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636172723.82
128 rdf:type schema:Person
129 sg:person.0741777712.99 schema:affiliation https://www.grid.ac/institutes/grid.417285.d
130 schema:familyName Tahmasebi
131 schema:givenName Amir M.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741777712.99
133 rdf:type schema:Person
134 sg:person.07717672120.17 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
135 schema:familyName Zhu
136 schema:givenName Henghui
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717672120.17
138 rdf:type schema:Person
139 https://doi.org/10.1016/0306-4573(88)90021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032478827
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jacr.2007.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000888179
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/bioinformatics/btt580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022858133
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1108/eb046814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037275209
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1136/jamia.2009.001560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035244914
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1148/radiographics.21.1.g01ja18237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074750991
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1162/coli.07-034-r2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045615725
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
154 rdf:type schema:CreativeWork
155 https://doi.org/10.18653/v1/w16-2922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098653399
156 rdf:type schema:CreativeWork
157 https://doi.org/10.18653/v1/w17-2312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096025250
158 rdf:type schema:CreativeWork
159 https://doi.org/10.3115/1567594.1567610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099140177
160 rdf:type schema:CreativeWork
161 https://doi.org/10.5772/51066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011412664
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
164 schema:name Division of Systems Engineering, Boston University, Brookline, MA, USA
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
167 schema:name Department of Radiology, University of Washington, Seattle, WA, USA
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.412578.d schema:alternateName University of Chicago Medical Center
170 schema:name Department of Radiology, University of Chicago Medical Center, Chicago, IL, USA
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.417284.c schema:alternateName Philips (Netherlands)
173 schema:name Philips Research, Eindhoven, North Brabant, The Netherlands
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.417285.d schema:alternateName Philips (United States)
176 schema:name Philips Research North America, 2 Canal Park, 3rd Floor, 02141, Cambridge, MA, USA
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...