Andriod Device-Based Cervical Cancer Screening for Resource-Poor Settings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Vidya Kudva, Keerthana Prasad, Shyamala Guruvare

ABSTRACT

Visual inspection with acetic acid (VIA) is an effective, affordable and simple test for cervical cancer screening in resource-poor settings. But considerable expertise is needed to differentiate cancerous lesions from normal lesions, which is lacking in developing countries. Many studies have attempted automation of cervical cancer detection from cervix images acquired during the VIA process. These studies used images acquired through colposcopy or cervicography. However, colposcopy is expensive and hence is not feasible as a screening tool in resource-poor settings. Cervicography uses a digital camera to acquire cervix images which are subsequently sent to experts for evaluation. Hence, cervicography does not provide a real-time decision of whether the cervix is normal or not, during the VIA examination. In case the cervix is found to be abnormal, the patient may be referred to a hospital for further evaluation using Pap smear and/or biopsy. An android device with an inbuilt app to acquire images and provide instant results would be an obvious choice in resource-poor settings. In this paper, we propose an algorithm for analysis of cervix images acquired using an android device, which can be used for the development of decision support system to provide instant decision during cervical cancer screening. This algorithm offers an accuracy of 97.94%, a sensitivity of 99.05% and specificity of 97.16%. More... »

PAGES

646-654

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10278-018-0083-x

DOI

http://dx.doi.org/10.1007/s10278-018-0083-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104116445

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29777323


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Manipal University", 
          "id": "https://www.grid.ac/institutes/grid.411639.8", 
          "name": [
            "School of Information Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India", 
            "NMAMIT, 574110, Nitte, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudva", 
        "givenName": "Vidya", 
        "id": "sg:person.013746472026.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013746472026.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Manipal University", 
          "id": "https://www.grid.ac/institutes/grid.411639.8", 
          "name": [
            "School of Information Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prasad", 
        "givenName": "Keerthana", 
        "id": "sg:person.01162425151.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162425151.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kasturba Medical College", 
          "id": "https://www.grid.ac/institutes/grid.465547.1", 
          "name": [
            "Department of Obstetrics and Gynecology, Kasturba Medical College, 576104, Manipal, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guruvare", 
        "givenName": "Shyamala", 
        "id": "sg:person.0662036223.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662036223.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0734-189x(83)90032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002976464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/lgt.0000000000000136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004103547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/lgt.0000000000000136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004103547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/lgt.0000000000000136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004103547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-008-9134-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326582", 
          "https://doi.org/10.1007/s10278-008-9134-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-008-9134-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326582", 
          "https://doi.org/10.1007/s10278-008-9134-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006250-200109000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012296129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006250-200109000-00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012296129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013257560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.596064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013911150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0215(19990105)80:1<161::aid-ijc28>3.0.co;2-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014573613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019422208", 
          "https://doi.org/10.1007/bf00116251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2013.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022958634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19981115)83:10<2150::aid-cncr13>3.0.co;2-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025052370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(20000815)89:4<826::aid-cncr15>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029588639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.2830654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031409181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.653089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031730958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.3079810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036068361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.21972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038239846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/jtt.2011.101008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040924172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/jtt.2011.101008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040924172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/0971-5851.92808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047104653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0134309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053661537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.44046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061122207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.896790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstsp.2008.2011102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061337808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2008.2007823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2009.2037201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2106796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2014.2352311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5005/jp-journals-10028-1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072540388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.irbm.2017.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091818507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2015.7163868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094692072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2001.958490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094751286"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "Visual inspection with acetic acid (VIA) is an effective, affordable and simple test for cervical cancer screening in resource-poor settings. But considerable expertise is needed to differentiate cancerous lesions from normal lesions, which is lacking in developing countries. Many studies have attempted automation of cervical cancer detection from cervix images acquired during the VIA process. These studies used images acquired through colposcopy or cervicography. However, colposcopy is expensive and hence is not feasible as a screening tool in resource-poor settings. Cervicography uses a digital camera to acquire cervix images which are subsequently sent to experts for evaluation. Hence, cervicography does not provide a real-time decision of whether the cervix is normal or not, during the VIA examination. In case the cervix is found to be abnormal, the patient may be referred to a hospital for further evaluation using Pap smear and/or biopsy. An android device with an inbuilt app to acquire images and provide instant results would be an obvious choice in resource-poor settings. In this paper, we propose an algorithm for analysis of cervix images acquired using an android device, which can be used for the development of decision support system to provide instant decision during cervical cancer screening. This algorithm offers an accuracy of 97.94%, a sensitivity of 99.05% and specificity of 97.16%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10278-018-0083-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1100894", 
        "issn": [
          "0897-1889", 
          "1618-727X"
        ], 
        "name": "Journal of Digital Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Andriod Device-Based Cervical Cancer Screening for Resource-Poor Settings", 
    "pagination": "646-654", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bb4c21c73603439db1f64242f464d4e222055237e01350090b2aa2e7715c598a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29777323"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9100529"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10278-018-0083-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104116445"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10278-018-0083-x", 
      "https://app.dimensions.ai/details/publication/pub.1104116445"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000557.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10278-018-0083-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10278-018-0083-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10278-018-0083-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10278-018-0083-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10278-018-0083-x'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10278-018-0083-x schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N33938271dfcc4ad0b5871c6c680f8fa1
4 schema:citation sg:pub.10.1007/bf00116251
5 sg:pub.10.1007/s10278-008-9134-z
6 https://doi.org/10.1002/(sici)1097-0142(19981115)83:10<2150::aid-cncr13>3.0.co;2-0
7 https://doi.org/10.1002/(sici)1097-0215(19990105)80:1<161::aid-ijc28>3.0.co;2-8
8 https://doi.org/10.1002/1097-0142(20000815)89:4<826::aid-cncr15>3.0.co;2-5
9 https://doi.org/10.1002/ijc.21972
10 https://doi.org/10.1016/0734-189x(83)90032-4
11 https://doi.org/10.1016/j.csl.2013.11.004
12 https://doi.org/10.1016/j.irbm.2017.08.003
13 https://doi.org/10.1097/00006250-200109000-00014
14 https://doi.org/10.1097/lgt.0000000000000136
15 https://doi.org/10.1109/21.44046
16 https://doi.org/10.1109/42.896790
17 https://doi.org/10.1109/icip.2001.958490
18 https://doi.org/10.1109/isbi.2015.7163868
19 https://doi.org/10.1109/jstsp.2008.2011102
20 https://doi.org/10.1109/tmi.2008.2007823
21 https://doi.org/10.1109/tmi.2009.2037201
22 https://doi.org/10.1109/tmi.2011.2106796
23 https://doi.org/10.1109/tmi.2014.2352311
24 https://doi.org/10.1109/tpami.2002.1017623
25 https://doi.org/10.1109/tsmc.1973.4309314
26 https://doi.org/10.1117/1.2830654
27 https://doi.org/10.1117/1.3079810
28 https://doi.org/10.1117/12.596064
29 https://doi.org/10.1117/12.653089
30 https://doi.org/10.1258/jtt.2011.101008
31 https://doi.org/10.1371/journal.pone.0134309
32 https://doi.org/10.3322/caac.21262
33 https://doi.org/10.4103/0971-5851.92808
34 https://doi.org/10.5005/jp-journals-10028-1196
35 schema:datePublished 2018-10
36 schema:datePublishedReg 2018-10-01
37 schema:description Visual inspection with acetic acid (VIA) is an effective, affordable and simple test for cervical cancer screening in resource-poor settings. But considerable expertise is needed to differentiate cancerous lesions from normal lesions, which is lacking in developing countries. Many studies have attempted automation of cervical cancer detection from cervix images acquired during the VIA process. These studies used images acquired through colposcopy or cervicography. However, colposcopy is expensive and hence is not feasible as a screening tool in resource-poor settings. Cervicography uses a digital camera to acquire cervix images which are subsequently sent to experts for evaluation. Hence, cervicography does not provide a real-time decision of whether the cervix is normal or not, during the VIA examination. In case the cervix is found to be abnormal, the patient may be referred to a hospital for further evaluation using Pap smear and/or biopsy. An android device with an inbuilt app to acquire images and provide instant results would be an obvious choice in resource-poor settings. In this paper, we propose an algorithm for analysis of cervix images acquired using an android device, which can be used for the development of decision support system to provide instant decision during cervical cancer screening. This algorithm offers an accuracy of 97.94%, a sensitivity of 99.05% and specificity of 97.16%.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N13f5b8ad88384bf8823bc623ca54f443
42 N6c7e34208d5e4cf59cac64986b27afb6
43 sg:journal.1100894
44 schema:name Andriod Device-Based Cervical Cancer Screening for Resource-Poor Settings
45 schema:pagination 646-654
46 schema:productId N01e8e2da51674cfab5c9e198e93a7bf7
47 N1dc50d6b293b4ca8adf0e207cdd7982c
48 Nacc8afa06bb340c093dedface164f2f4
49 Nf3222920e3cb4210b94a37a3f542ddd7
50 Nfbce0f4ce41544e0a8e41c8d46ce2ead
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104116445
52 https://doi.org/10.1007/s10278-018-0083-x
53 schema:sdDatePublished 2019-04-11T02:22
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N71c026cb374844aa976bd6eda2ea0d36
56 schema:url https://link.springer.com/10.1007%2Fs10278-018-0083-x
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N01e8e2da51674cfab5c9e198e93a7bf7 schema:name readcube_id
61 schema:value bb4c21c73603439db1f64242f464d4e222055237e01350090b2aa2e7715c598a
62 rdf:type schema:PropertyValue
63 N13f5b8ad88384bf8823bc623ca54f443 schema:volumeNumber 31
64 rdf:type schema:PublicationVolume
65 N1dc50d6b293b4ca8adf0e207cdd7982c schema:name doi
66 schema:value 10.1007/s10278-018-0083-x
67 rdf:type schema:PropertyValue
68 N30ec1bd73bcf4ec489c9c2734ed3ed0b rdf:first sg:person.0662036223.96
69 rdf:rest rdf:nil
70 N33938271dfcc4ad0b5871c6c680f8fa1 rdf:first sg:person.013746472026.49
71 rdf:rest N9a32172914aa4b01973257cf34f4bf26
72 N6c7e34208d5e4cf59cac64986b27afb6 schema:issueNumber 5
73 rdf:type schema:PublicationIssue
74 N71c026cb374844aa976bd6eda2ea0d36 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N9a32172914aa4b01973257cf34f4bf26 rdf:first sg:person.01162425151.35
77 rdf:rest N30ec1bd73bcf4ec489c9c2734ed3ed0b
78 Nacc8afa06bb340c093dedface164f2f4 schema:name pubmed_id
79 schema:value 29777323
80 rdf:type schema:PropertyValue
81 Nf3222920e3cb4210b94a37a3f542ddd7 schema:name nlm_unique_id
82 schema:value 9100529
83 rdf:type schema:PropertyValue
84 Nfbce0f4ce41544e0a8e41c8d46ce2ead schema:name dimensions_id
85 schema:value pub.1104116445
86 rdf:type schema:PropertyValue
87 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
88 schema:name Medical and Health Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
91 schema:name Public Health and Health Services
92 rdf:type schema:DefinedTerm
93 sg:journal.1100894 schema:issn 0897-1889
94 1618-727X
95 schema:name Journal of Digital Imaging
96 rdf:type schema:Periodical
97 sg:person.01162425151.35 schema:affiliation https://www.grid.ac/institutes/grid.411639.8
98 schema:familyName Prasad
99 schema:givenName Keerthana
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162425151.35
101 rdf:type schema:Person
102 sg:person.013746472026.49 schema:affiliation https://www.grid.ac/institutes/grid.411639.8
103 schema:familyName Kudva
104 schema:givenName Vidya
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013746472026.49
106 rdf:type schema:Person
107 sg:person.0662036223.96 schema:affiliation https://www.grid.ac/institutes/grid.465547.1
108 schema:familyName Guruvare
109 schema:givenName Shyamala
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662036223.96
111 rdf:type schema:Person
112 sg:pub.10.1007/bf00116251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019422208
113 https://doi.org/10.1007/bf00116251
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10278-008-9134-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007326582
116 https://doi.org/10.1007/s10278-008-9134-z
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/(sici)1097-0142(19981115)83:10<2150::aid-cncr13>3.0.co;2-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025052370
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/(sici)1097-0215(19990105)80:1<161::aid-ijc28>3.0.co;2-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014573613
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/1097-0142(20000815)89:4<826::aid-cncr15>3.0.co;2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029588639
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/ijc.21972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038239846
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0734-189x(83)90032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002976464
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.csl.2013.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022958634
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.irbm.2017.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091818507
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1097/00006250-200109000-00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012296129
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1097/lgt.0000000000000136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004103547
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/21.44046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122207
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/42.896790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170986
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/icip.2001.958490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094751286
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/isbi.2015.7163868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094692072
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/jstsp.2008.2011102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061337808
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tmi.2008.2007823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695187
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tmi.2009.2037201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695500
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tmi.2011.2106796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695692
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tmi.2014.2352311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696375
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tpami.2002.1017623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742396
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1117/1.2830654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031409181
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1117/1.3079810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036068361
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1117/12.596064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013911150
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1117/12.653089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031730958
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1258/jtt.2011.101008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040924172
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1371/journal.pone.0134309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053661537
169 rdf:type schema:CreativeWork
170 https://doi.org/10.3322/caac.21262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013257560
171 rdf:type schema:CreativeWork
172 https://doi.org/10.4103/0971-5851.92808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047104653
173 rdf:type schema:CreativeWork
174 https://doi.org/10.5005/jp-journals-10028-1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072540388
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.411639.8 schema:alternateName Manipal University
177 schema:name NMAMIT, 574110, Nitte, India
178 School of Information Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.465547.1 schema:alternateName Kasturba Medical College
181 schema:name Department of Obstetrics and Gynecology, Kasturba Medical College, 576104, Manipal, Karnataka, India
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...