Supervised Segmentation of Polycystic Kidneys: a New Application for Stereology Data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-03-18

AUTHORS

Joshua D. Warner, Maria V. Irazabal, Ganapathy Krishnamurthi, Bernard F. King, Vicente E. Torres, Bradley J. Erickson

ABSTRACT

Stereology is a volume estimation method, typically applied to diagnostic imaging examinations in population studies where planimetry is too time-consuming (Chapman et al. Kidney Int 64:1035–1045, 2003), to obtain quantitative measurements (Nyengaard J Am Soc Nephrol 10:1100–1123, 1999, Michel and Cruz-Orive J Microsc 150:117–136, 1988) of certain structures or organs. However, true segmentation is required in order to perform advanced analysis of the tissues. This paper describes a novel method for segmentation of region(s) of interest using stereology data as prior information. The result is an efficient segmentation method for structures that cannot be easily segmented using other methods. More... »

PAGES

514-519

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10278-014-9679-y

DOI

http://dx.doi.org/10.1007/s10278-014-9679-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003517436

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24639063


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organ Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polycystic Kidney Diseases", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mayo Clinic Department of Biomedical Engineering, Mayo Graduate School, Mayo Medical School and the Mayo Clinic Medical Scientist Training Program, 200 First Street SW, 55905, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Mayo Clinic Department of Biomedical Engineering, Mayo Graduate School, Mayo Medical School and the Mayo Clinic Medical Scientist Training Program, 200 First Street SW, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Warner", 
        "givenName": "Joshua D.", 
        "id": "sg:person.0765602242.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765602242.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic Department of Nephrology, Rochester, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Mayo Clinic Department of Nephrology, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Irazabal", 
        "givenName": "Maria V.", 
        "id": "sg:person.0736037763.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736037763.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnamurthi", 
        "givenName": "Ganapathy", 
        "id": "sg:person.013774661125.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774661125.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic Department of Radiology, Rochester, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Mayo Clinic Department of Radiology, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "King", 
        "givenName": "Bernard F.", 
        "id": "sg:person.013051432637.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013051432637.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic Department of Nephrology, Rochester, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Mayo Clinic Department of Nephrology, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres", 
        "givenName": "Vicente E.", 
        "id": "sg:person.0621563323.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621563323.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic Department of Radiology, Rochester, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Mayo Clinic Department of Radiology, Rochester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erickson", 
        "givenName": "Bradley J.", 
        "id": "sg:person.0705021401.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705021401.90"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-03-18", 
    "datePublishedReg": "2014-03-18", 
    "description": "Stereology is a volume estimation method, typically applied to diagnostic imaging examinations in population studies where planimetry is too time-consuming (Chapman et al. Kidney Int 64:1035\u20131045, 2003), to obtain quantitative measurements (Nyengaard J Am Soc Nephrol 10:1100\u20131123, 1999, Michel and Cruz-Orive J Microsc 150:117\u2013136, 1988) of certain structures or organs. However, true segmentation is required in order to perform advanced analysis of the tissues. This paper describes a novel method for segmentation of region(s) of interest using stereology data as prior information. The result is an efficient segmentation method for structures that cannot be easily segmented using other methods.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10278-014-9679-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2358430", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2439058", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1100894", 
        "issn": [
          "0897-1889", 
          "1618-727X"
        ], 
        "name": "Journal of Digital Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "estimation method", 
      "advanced analysis", 
      "volume estimation method", 
      "novel method", 
      "new applications", 
      "method", 
      "structure", 
      "prior information", 
      "quantitative measurements", 
      "certain structures", 
      "efficient segmentation method", 
      "applications", 
      "measurements", 
      "order", 
      "segmentation method", 
      "segmentation", 
      "results", 
      "supervised segmentation", 
      "analysis", 
      "data", 
      "true segmentation", 
      "interest", 
      "study", 
      "information", 
      "stereology", 
      "tissue", 
      "examination", 
      "planimetry", 
      "population studies", 
      "imaging examinations", 
      "organs", 
      "diagnostic imaging examinations", 
      "paper", 
      "polycystic kidneys", 
      "kidney", 
      "stereology data"
    ], 
    "name": "Supervised Segmentation of Polycystic Kidneys: a New Application for Stereology Data", 
    "pagination": "514-519", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003517436"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10278-014-9679-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24639063"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10278-014-9679-y", 
      "https://app.dimensions.ai/details/publication/pub.1003517436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_625.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10278-014-9679-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10278-014-9679-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10278-014-9679-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10278-014-9679-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10278-014-9679-y'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      70 URIs      62 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10278-014-9679-y schema:about N0d99247c8b55439fb6fcb3c3915b6213
2 N30c46eb687da4d60bd038dd8adb41a6e
3 N47a2e0439b874c0d8cad119dad1e7701
4 N4a8d811bc01843b8b283bb6e6cc09ada
5 N60ec62e49fc04f4788f2ddb1b3b57e6e
6 N7ac439ba67224f6fb47678a2cae91bc8
7 Nac455d47fb00431b8c8acd20d7561828
8 Ncc825f08077a46379083636dd2b800f9
9 anzsrc-for:11
10 anzsrc-for:1103
11 schema:author N01209c341beb4dd89acffd6914c606d9
12 schema:datePublished 2014-03-18
13 schema:datePublishedReg 2014-03-18
14 schema:description Stereology is a volume estimation method, typically applied to diagnostic imaging examinations in population studies where planimetry is too time-consuming (Chapman et al. Kidney Int 64:1035–1045, 2003), to obtain quantitative measurements (Nyengaard J Am Soc Nephrol 10:1100–1123, 1999, Michel and Cruz-Orive J Microsc 150:117–136, 1988) of certain structures or organs. However, true segmentation is required in order to perform advanced analysis of the tissues. This paper describes a novel method for segmentation of region(s) of interest using stereology data as prior information. The result is an efficient segmentation method for structures that cannot be easily segmented using other methods.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N0583c3787c8f48789db75af226993351
19 Nfc6735b61604439cacdf8719e6bc23ed
20 sg:journal.1100894
21 schema:keywords advanced analysis
22 analysis
23 applications
24 certain structures
25 data
26 diagnostic imaging examinations
27 efficient segmentation method
28 estimation method
29 examination
30 imaging examinations
31 information
32 interest
33 kidney
34 measurements
35 method
36 new applications
37 novel method
38 order
39 organs
40 paper
41 planimetry
42 polycystic kidneys
43 population studies
44 prior information
45 quantitative measurements
46 results
47 segmentation
48 segmentation method
49 stereology
50 stereology data
51 structure
52 study
53 supervised segmentation
54 tissue
55 true segmentation
56 volume estimation method
57 schema:name Supervised Segmentation of Polycystic Kidneys: a New Application for Stereology Data
58 schema:pagination 514-519
59 schema:productId N7c7ffa6b394045f38cdaa02773f73a5a
60 N916a421cc2c142cf95f4856c0eeca658
61 N9abaaeac5b6341b4a4e2730975d595cc
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003517436
63 https://doi.org/10.1007/s10278-014-9679-y
64 schema:sdDatePublished 2021-11-01T18:22
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N066e08ca6e784e33bf626875b7e7ed1d
67 schema:url https://doi.org/10.1007/s10278-014-9679-y
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N01209c341beb4dd89acffd6914c606d9 rdf:first sg:person.0765602242.16
72 rdf:rest N3bb7007a55cc4858b073bce8c114efed
73 N0583c3787c8f48789db75af226993351 schema:issueNumber 4
74 rdf:type schema:PublicationIssue
75 N066e08ca6e784e33bf626875b7e7ed1d schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N0d99247c8b55439fb6fcb3c3915b6213 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Kidney
79 rdf:type schema:DefinedTerm
80 N30c46eb687da4d60bd038dd8adb41a6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Organ Size
82 rdf:type schema:DefinedTerm
83 N3a56ddacac5941629e6ce27d1a13ff25 rdf:first sg:person.0621563323.13
84 rdf:rest N601f7ae46873451480e4f18e319db14a
85 N3bb7007a55cc4858b073bce8c114efed rdf:first sg:person.0736037763.82
86 rdf:rest Nd55e0bb6e25c4756b7d9a36d8da0e6bb
87 N47a2e0439b874c0d8cad119dad1e7701 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Image Processing, Computer-Assisted
89 rdf:type schema:DefinedTerm
90 N4a8d811bc01843b8b283bb6e6cc09ada schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Humans
92 rdf:type schema:DefinedTerm
93 N601f7ae46873451480e4f18e319db14a rdf:first sg:person.0705021401.90
94 rdf:rest rdf:nil
95 N60ec62e49fc04f4788f2ddb1b3b57e6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Magnetic Resonance Imaging
97 rdf:type schema:DefinedTerm
98 N6653086d622e4ccf8d900d774aa5f706 rdf:first sg:person.013051432637.40
99 rdf:rest N3a56ddacac5941629e6ce27d1a13ff25
100 N7ac439ba67224f6fb47678a2cae91bc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Polycystic Kidney Diseases
102 rdf:type schema:DefinedTerm
103 N7c7ffa6b394045f38cdaa02773f73a5a schema:name pubmed_id
104 schema:value 24639063
105 rdf:type schema:PropertyValue
106 N916a421cc2c142cf95f4856c0eeca658 schema:name dimensions_id
107 schema:value pub.1003517436
108 rdf:type schema:PropertyValue
109 N9abaaeac5b6341b4a4e2730975d595cc schema:name doi
110 schema:value 10.1007/s10278-014-9679-y
111 rdf:type schema:PropertyValue
112 Nac455d47fb00431b8c8acd20d7561828 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Algorithms
114 rdf:type schema:DefinedTerm
115 Ncc825f08077a46379083636dd2b800f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Imaging, Three-Dimensional
117 rdf:type schema:DefinedTerm
118 Nd55e0bb6e25c4756b7d9a36d8da0e6bb rdf:first sg:person.013774661125.64
119 rdf:rest N6653086d622e4ccf8d900d774aa5f706
120 Nfc6735b61604439cacdf8719e6bc23ed schema:volumeNumber 27
121 rdf:type schema:PublicationVolume
122 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
123 schema:name Medical and Health Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
126 schema:name Clinical Sciences
127 rdf:type schema:DefinedTerm
128 sg:grant.2358430 http://pending.schema.org/fundedItem sg:pub.10.1007/s10278-014-9679-y
129 rdf:type schema:MonetaryGrant
130 sg:grant.2439058 http://pending.schema.org/fundedItem sg:pub.10.1007/s10278-014-9679-y
131 rdf:type schema:MonetaryGrant
132 sg:journal.1100894 schema:issn 0897-1889
133 1618-727X
134 schema:name Journal of Digital Imaging
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.013051432637.40 schema:affiliation grid-institutes:grid.66875.3a
138 schema:familyName King
139 schema:givenName Bernard F.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013051432637.40
141 rdf:type schema:Person
142 sg:person.013774661125.64 schema:affiliation grid-institutes:grid.417969.4
143 schema:familyName Krishnamurthi
144 schema:givenName Ganapathy
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774661125.64
146 rdf:type schema:Person
147 sg:person.0621563323.13 schema:affiliation grid-institutes:grid.66875.3a
148 schema:familyName Torres
149 schema:givenName Vicente E.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621563323.13
151 rdf:type schema:Person
152 sg:person.0705021401.90 schema:affiliation grid-institutes:grid.66875.3a
153 schema:familyName Erickson
154 schema:givenName Bradley J.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705021401.90
156 rdf:type schema:Person
157 sg:person.0736037763.82 schema:affiliation grid-institutes:grid.66875.3a
158 schema:familyName Irazabal
159 schema:givenName Maria V.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736037763.82
161 rdf:type schema:Person
162 sg:person.0765602242.16 schema:affiliation grid-institutes:grid.66875.3a
163 schema:familyName Warner
164 schema:givenName Joshua D.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765602242.16
166 rdf:type schema:Person
167 grid-institutes:grid.417969.4 schema:alternateName Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
168 schema:name Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
169 rdf:type schema:Organization
170 grid-institutes:grid.66875.3a schema:alternateName Mayo Clinic Department of Biomedical Engineering, Mayo Graduate School, Mayo Medical School and the Mayo Clinic Medical Scientist Training Program, 200 First Street SW, 55905, Rochester, MN, USA
171 Mayo Clinic Department of Nephrology, Rochester, USA
172 Mayo Clinic Department of Radiology, Rochester, USA
173 schema:name Mayo Clinic Department of Biomedical Engineering, Mayo Graduate School, Mayo Medical School and the Mayo Clinic Medical Scientist Training Program, 200 First Street SW, 55905, Rochester, MN, USA
174 Mayo Clinic Department of Nephrology, Rochester, USA
175 Mayo Clinic Department of Radiology, Rochester, USA
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...