Challenges to Protocol Optimization Due to Unexpected Variation of CT Contrast Dose Amount and Flow View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06

AUTHORS

Tracy J. Robinson, Jeffrey D. Robinson, Daniel S. Hippe, Lee M. Mitsumori

ABSTRACT

High-quality computed tomography (CT) exams are critical to maximizing radiologist's interpretive ability. Exam quality in part depends on proper contrast administration. We examined injector data from consecutive abdominal and pelvic CT exams to analyze variation in contrast administration. Discrepancies between intended IV contrast dose and flow rate with the actual administered contrast dose and measured flow rate were common. In particular, delivered contrast dose discrepancies of at least 10% occurred in 13% of exams while discrepancies in flow rate of at least 10% occurred in 42% of exams. Injector logs are useful for assessing and tracking this type of variability which may confound contrast administration optimization and standardization efforts. More... »

PAGES

402-405

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10278-012-9544-9

DOI

http://dx.doi.org/10.1007/s10278-012-9544-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041520142

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23143417


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Collection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Abdominal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 1959 NE Pacific St., BB308, Box 357115, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robinson", 
        "givenName": "Tracy J.", 
        "id": "sg:person.01351451050.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351451050.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 1959 NE Pacific St., BB308, Box 357115, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robinson", 
        "givenName": "Jeffrey D.", 
        "id": "sg:person.01137335166.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137335166.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 1959 NE Pacific St., BB308, Box 357115, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hippe", 
        "givenName": "Daniel S.", 
        "id": "sg:person.0764104440.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, University of Washington, 1959 NE Pacific St., BB308, Box 357115, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitsumori", 
        "givenName": "Lee M.", 
        "id": "sg:person.0741344053.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741344053.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/rg.262055138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010655375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacr.2011.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011166066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200305001-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018309702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200305001-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018309702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12194-010-0105-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024274990", 
          "https://doi.org/10.1007/s12194-010-0105-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000208239.34723.5d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029712899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000208239.34723.5d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029712899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e3181efe8b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035444753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e3181efe8b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035444753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e3181efe8b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035444753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10406-005-0165-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035712050", 
          "https://doi.org/10.1007/s10406-005-0165-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcl.2008.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040528217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000238008.26882.8d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042943997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000238008.26882.8d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042943997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcl.2009.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047187554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000236421.35761.7a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048761732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rct.0000236421.35761.7a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048761732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003300000816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052194822", 
          "https://doi.org/10.1007/s003300000816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0028-1109201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057124784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077187428", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "High-quality computed tomography (CT) exams are critical to maximizing radiologist's interpretive ability. Exam quality in part depends on proper contrast administration. We examined injector data from consecutive abdominal and pelvic CT exams to analyze variation in contrast administration. Discrepancies between intended IV contrast dose and flow rate with the actual administered contrast dose and measured flow rate were common. In particular, delivered contrast dose discrepancies of at least 10% occurred in 13% of exams while discrepancies in flow rate of at least 10% occurred in 42% of exams. Injector logs are useful for assessing and tracking this type of variability which may confound contrast administration optimization and standardization efforts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10278-012-9544-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1100894", 
        "issn": [
          "0897-1889", 
          "1618-727X"
        ], 
        "name": "Journal of Digital Imaging", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Challenges to Protocol Optimization Due to Unexpected Variation of CT Contrast Dose Amount and Flow", 
    "pagination": "402-405", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c5ca011b4e9a4aa204e583ba8f44e7cdeba6d0f8c92e7cb8018a12495559cda8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23143417"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9100529"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10278-012-9544-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041520142"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10278-012-9544-9", 
      "https://app.dimensions.ai/details/publication/pub.1041520142"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10278-012-9544-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10278-012-9544-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10278-012-9544-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10278-012-9544-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10278-012-9544-9'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      50 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10278-012-9544-9 schema:about N30f02d6c34a24f89a1b2f6a5ea74cff3
2 N38cd61530d924a3880ba6829ae2c3a6a
3 N438cc2df72a14adcb457cf5fc97c834d
4 N46eb4b4f77cf4e86a4613e5620dd6965
5 N8646ed4b0d624fdfade077ecccc15e7c
6 Nabcb0aab4d5b420fa5cd73c72282d9ec
7 Nfa4ea6f311dd4eccb542ca0bc6c86c4e
8 anzsrc-for:11
9 anzsrc-for:1103
10 schema:author N2f3a9fa505684974888b179d34182a82
11 schema:citation sg:pub.10.1007/s003300000816
12 sg:pub.10.1007/s10406-005-0165-y
13 sg:pub.10.1007/s12194-010-0105-y
14 https://app.dimensions.ai/details/publication/pub.1077187428
15 https://doi.org/10.1016/j.jacr.2011.04.012
16 https://doi.org/10.1016/j.rcl.2008.10.009
17 https://doi.org/10.1016/j.rcl.2009.08.012
18 https://doi.org/10.1055/s-0028-1109201
19 https://doi.org/10.1097/00004728-200305001-00003
20 https://doi.org/10.1097/01.rct.0000236421.35761.7a
21 https://doi.org/10.1097/01.rct.0000238008.26882.8d
22 https://doi.org/10.1097/01.rli.0000208239.34723.5d
23 https://doi.org/10.1097/rti.0b013e3181efe8b0
24 https://doi.org/10.1148/rg.262055138
25 schema:datePublished 2013-06
26 schema:datePublishedReg 2013-06-01
27 schema:description High-quality computed tomography (CT) exams are critical to maximizing radiologist's interpretive ability. Exam quality in part depends on proper contrast administration. We examined injector data from consecutive abdominal and pelvic CT exams to analyze variation in contrast administration. Discrepancies between intended IV contrast dose and flow rate with the actual administered contrast dose and measured flow rate were common. In particular, delivered contrast dose discrepancies of at least 10% occurred in 13% of exams while discrepancies in flow rate of at least 10% occurred in 42% of exams. Injector logs are useful for assessing and tracking this type of variability which may confound contrast administration optimization and standardization efforts.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N35b76d238ca3427e942e34cb0a1dc4c4
32 N6ea7093ae5e6483bae190d8c362efeca
33 sg:journal.1100894
34 schema:name Challenges to Protocol Optimization Due to Unexpected Variation of CT Contrast Dose Amount and Flow
35 schema:pagination 402-405
36 schema:productId N0ca1522d00be437190560f8029182f7f
37 N6eca6834fed541e88e765e4f8bf13732
38 Nda548b62c03e406a9d80b7a6756304cf
39 Ne41bbe3ffab44c0dba34fdc50eca6219
40 Nea1471f689f34ef2906b132952b61871
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041520142
42 https://doi.org/10.1007/s10278-012-9544-9
43 schema:sdDatePublished 2019-04-10T14:55
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N9c5cff8c0d674112b1f5362ce8396010
46 schema:url http://link.springer.com/10.1007/s10278-012-9544-9
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0ca1522d00be437190560f8029182f7f schema:name doi
51 schema:value 10.1007/s10278-012-9544-9
52 rdf:type schema:PropertyValue
53 N1f7fb6179dae4df994986f2276cb0314 schema:name Department of Radiology, University of Washington, 1959 NE Pacific St., BB308, Box 357115, 98195, Seattle, WA, USA
54 rdf:type schema:Organization
55 N238c10b0b2604363b7868a08d42ade2a rdf:first sg:person.0764104440.34
56 rdf:rest Na01a1cc76d34475bb1fcbb9353ff99fb
57 N2f3a9fa505684974888b179d34182a82 rdf:first sg:person.01351451050.42
58 rdf:rest Nc5f26ad978ce4b9f92d5914518c6dd97
59 N30f02d6c34a24f89a1b2f6a5ea74cff3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Contrast Media
61 rdf:type schema:DefinedTerm
62 N35b76d238ca3427e942e34cb0a1dc4c4 schema:issueNumber 3
63 rdf:type schema:PublicationIssue
64 N38cd61530d924a3880ba6829ae2c3a6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Tomography, X-Ray Computed
66 rdf:type schema:DefinedTerm
67 N438cc2df72a14adcb457cf5fc97c834d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Radiographic Image Interpretation, Computer-Assisted
69 rdf:type schema:DefinedTerm
70 N46eb4b4f77cf4e86a4613e5620dd6965 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Data Collection
72 rdf:type schema:DefinedTerm
73 N6ea7093ae5e6483bae190d8c362efeca schema:volumeNumber 26
74 rdf:type schema:PublicationVolume
75 N6eca6834fed541e88e765e4f8bf13732 schema:name readcube_id
76 schema:value c5ca011b4e9a4aa204e583ba8f44e7cdeba6d0f8c92e7cb8018a12495559cda8
77 rdf:type schema:PropertyValue
78 N8646ed4b0d624fdfade077ecccc15e7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Software
80 rdf:type schema:DefinedTerm
81 N9c5cff8c0d674112b1f5362ce8396010 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N9e891e8414634bdfa148159505b9586b schema:name Department of Radiology, University of Washington, 1959 NE Pacific St., BB308, Box 357115, 98195, Seattle, WA, USA
84 rdf:type schema:Organization
85 Na01a1cc76d34475bb1fcbb9353ff99fb rdf:first sg:person.0741344053.91
86 rdf:rest rdf:nil
87 Nabcb0aab4d5b420fa5cd73c72282d9ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Radiography, Abdominal
89 rdf:type schema:DefinedTerm
90 Nc5f26ad978ce4b9f92d5914518c6dd97 rdf:first sg:person.01137335166.05
91 rdf:rest N238c10b0b2604363b7868a08d42ade2a
92 Nda548b62c03e406a9d80b7a6756304cf schema:name nlm_unique_id
93 schema:value 9100529
94 rdf:type schema:PropertyValue
95 Ne41bbe3ffab44c0dba34fdc50eca6219 schema:name pubmed_id
96 schema:value 23143417
97 rdf:type schema:PropertyValue
98 Nea1471f689f34ef2906b132952b61871 schema:name dimensions_id
99 schema:value pub.1041520142
100 rdf:type schema:PropertyValue
101 Nef30ef1cb68643a8a1a0a5e08e198085 schema:name Department of Radiology, University of Washington, 1959 NE Pacific St., BB308, Box 357115, 98195, Seattle, WA, USA
102 rdf:type schema:Organization
103 Nf1d8555f87984ee0b8faab4079100a94 schema:name Department of Radiology, University of Washington, 1959 NE Pacific St., BB308, Box 357115, 98195, Seattle, WA, USA
104 rdf:type schema:Organization
105 Nfa4ea6f311dd4eccb542ca0bc6c86c4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Humans
107 rdf:type schema:DefinedTerm
108 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
109 schema:name Medical and Health Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
112 schema:name Clinical Sciences
113 rdf:type schema:DefinedTerm
114 sg:journal.1100894 schema:issn 0897-1889
115 1618-727X
116 schema:name Journal of Digital Imaging
117 rdf:type schema:Periodical
118 sg:person.01137335166.05 schema:affiliation N1f7fb6179dae4df994986f2276cb0314
119 schema:familyName Robinson
120 schema:givenName Jeffrey D.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137335166.05
122 rdf:type schema:Person
123 sg:person.01351451050.42 schema:affiliation N9e891e8414634bdfa148159505b9586b
124 schema:familyName Robinson
125 schema:givenName Tracy J.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351451050.42
127 rdf:type schema:Person
128 sg:person.0741344053.91 schema:affiliation Nef30ef1cb68643a8a1a0a5e08e198085
129 schema:familyName Mitsumori
130 schema:givenName Lee M.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741344053.91
132 rdf:type schema:Person
133 sg:person.0764104440.34 schema:affiliation Nf1d8555f87984ee0b8faab4079100a94
134 schema:familyName Hippe
135 schema:givenName Daniel S.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34
137 rdf:type schema:Person
138 sg:pub.10.1007/s003300000816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052194822
139 https://doi.org/10.1007/s003300000816
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10406-005-0165-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035712050
142 https://doi.org/10.1007/s10406-005-0165-y
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s12194-010-0105-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024274990
145 https://doi.org/10.1007/s12194-010-0105-y
146 rdf:type schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1077187428 schema:CreativeWork
148 https://doi.org/10.1016/j.jacr.2011.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011166066
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.rcl.2008.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040528217
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.rcl.2009.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047187554
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1055/s-0028-1109201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057124784
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1097/00004728-200305001-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018309702
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1097/01.rct.0000236421.35761.7a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048761732
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1097/01.rct.0000238008.26882.8d schema:sameAs https://app.dimensions.ai/details/publication/pub.1042943997
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1097/01.rli.0000208239.34723.5d schema:sameAs https://app.dimensions.ai/details/publication/pub.1029712899
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1097/rti.0b013e3181efe8b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035444753
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1148/rg.262055138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010655375
167 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...